論文の概要: RobustNet: Improving Domain Generalization in Urban-Scene Segmentation
via Instance Selective Whitening
- arxiv url: http://arxiv.org/abs/2103.15597v2
- Date: Wed, 31 Mar 2021 10:56:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-01 13:00:17.392352
- Title: RobustNet: Improving Domain Generalization in Urban-Scene Segmentation
via Instance Selective Whitening
- Title(参考訳): RobustNet: インスタンス選択白化による都市シーンセグメンテーションにおけるドメイン一般化の改善
- Authors: Sungha Choi, Sanghun Jung, Huiwon Yun, Joanne Kim, Seungryong Kim and
Jaegul Choo
- Abstract要約: ディープニューラルネットワークの未認識領域への一般化能力の強化は、自動運転のような現実世界における安全性クリティカルな応用に不可欠である。
本稿では,未知領域のセグメンテーションネットワークのロバスト性を改善するために,新しいインスタンス選択型ホワイトニング損失を提案する。
- 参考スコア(独自算出の注目度): 40.98892593362837
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Enhancing the generalization capability of deep neural networks to unseen
domains is crucial for safety-critical applications in the real world such as
autonomous driving. To address this issue, this paper proposes a novel instance
selective whitening loss to improve the robustness of the segmentation networks
for unseen domains. Our approach disentangles the domain-specific style and
domain-invariant content encoded in higher-order statistics (i.e., feature
covariance) of the feature representations and selectively removes only the
style information causing domain shift. As shown in Fig. 1, our method provides
reasonable predictions for (a) low-illuminated, (b) rainy, and (c) unseen
structures. These types of images are not included in the training dataset,
where the baseline shows a significant performance drop, contrary to ours.
Being simple yet effective, our approach improves the robustness of various
backbone networks without additional computational cost. We conduct extensive
experiments in urban-scene segmentation and show the superiority of our
approach to existing work. Our code is available at
https://github.com/shachoi/RobustNet.
- Abstract(参考訳): ディープニューラルネットワークの未認識領域への一般化能力の強化は、自動運転のような現実世界における安全性クリティカルな応用に不可欠である。
そこで本研究では,未確認領域に対するセグメンテーションネットワークの堅牢性を改善するために,新しいインスタンス選択白化損失を提案する。
提案手法は,特徴表現の高次統計量(特徴共分散)に符号化されたドメイン固有スタイルとドメイン不変コンテンツを切り離し,ドメインシフトを引き起こすスタイル情報のみを選択的に除去する。
図に示すように。
本手法は, (a) 低照度, (b) 雨量, (c) 見えない構造に対する合理的な予測を提供する。
これらのタイプのイメージはトレーニングデータセットには含まれませんが、ベースラインは私たちのものとは対照的に、大幅なパフォーマンス低下を示しています。
提案手法は単純かつ効果的であり,計算コストを伴わずに様々なバックボーンネットワークの堅牢性を向上させる。
我々は,都市間セグメンテーションにおける広範囲な実験を行い,既存の作業に対するアプローチの優越性を示す。
私たちのコードはhttps://github.com/shachoi/robustnetで利用可能です。
関連論文リスト
- StyDeSty: Min-Max Stylization and Destylization for Single Domain Generalization [85.18995948334592]
単一のドメインの一般化(単一DG)は、単一のトレーニングドメインからのみ見えないドメインに一般化可能な堅牢なモデルを学ぶことを目的としている。
最先端のアプローチは、主に新しいデータを合成するために、敵対的な摂動やスタイルの強化といったデータ拡張に頼っている。
データ拡張の過程で、ソースと擬似ドメインのアライメントを明示的に考慮したemphStyDeStyを提案する。
論文 参考訳(メタデータ) (2024-06-01T02:41:34Z) - Intra- & Extra-Source Exemplar-Based Style Synthesis for Improved Domain
Generalization [21.591831983223997]
セマンティックセグメンテーションにおけるドメインの一般化を改善するために,先進的なスタイル合成パイプラインを提案する。
提案手法は,StyleGAN2インバージョンのためのマスク付きノイズエンコーダに基づく。
データシフトの種類によって、ドライブシーンセマンティックセマンティックセグメンテーションの最大12.4%のmIoU改善を実現しています。
論文 参考訳(メタデータ) (2023-07-02T19:56:43Z) - Single Domain Dynamic Generalization for Iris Presentation Attack
Detection [41.126916126040655]
アイリスプレゼンテーションの一般化はドメイン内の設定では大きな成功を収めたが、目に見えないドメインでは容易に分解できる。
本稿では,ドメイン不変性とドメイン固有性を利用した単一ドメイン動的一般化(SDDG)フレームワークを提案する。
提案手法は有効であり,LivDet-Iris 2017データセットの最先端性を上回っている。
論文 参考訳(メタデータ) (2023-05-22T07:54:13Z) - Adversarial Style Augmentation for Domain Generalization [41.72506801753435]
本稿では,より効率的な統計摂動を発生させることにより,より広いスタイル空間を探索する,新しいAdrial Style Augmentation (ASA)手法を提案する。
ASA の応用を容易にするため,プラグイン・アンド・プレイ方式で ASA メソッドをインスタンス化するシンプルなモジュールである AdvStyle を設計した。
本手法は,PACSデータセット上での単一ソース一般化条件下での競合よりも優れていた。
論文 参考訳(メタデータ) (2023-01-30T03:52:16Z) - Self-Training Guided Disentangled Adaptation for Cross-Domain Remote
Sensing Image Semantic Segmentation [20.07907723950031]
本稿では,クロスドメインRS画像セマンティックセグメンテーションタスクのための自己学習ガイド型不整合適応ネットワーク(ST-DASegNet)を提案する。
まず,ソースとターゲットの両方のイメージに対して,ソーススタイルとターゲットスタイルの特徴をそれぞれ抽出するために,ソース学生のバックボーンとターゲット学生のバックボーンを提案する。
次に、ユニバーサルな特徴を抽出し、ソーススタイルとターゲットスタイルの特徴の異なる特徴を浄化するために、ドメイン非絡み合いモジュールを提案する。
論文 参考訳(メタデータ) (2023-01-13T13:11:22Z) - Domain Adaptive Semantic Segmentation without Source Data [50.18389578589789]
モデルがソースドメイン上で事前学習されていることを前提として、ソースデータのないドメイン適応セマンティックセマンティックセマンティックセマンティクスについて検討する。
本稿では,この課題に対して,肯定的学習と否定的学習という2つの要素を用いた効果的な枠組みを提案する。
私たちのフレームワークは、パフォーマンスをさらに向上するために、他のメソッドに簡単に実装および組み込むことができます。
論文 参考訳(メタデータ) (2021-10-13T04:12:27Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
リモートセンシング画像からの道路セグメンテーションは、幅広い応用可能性を持つ課題である。
本稿では,この領域における領域シフト(DS)問題に対処するため,RoadDAと呼ばれる新たな段階的ドメイン適応モデルを提案する。
2つのベンチマーク実験の結果、RoadDAはドメインギャップを効率的に減らし、最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-08-28T09:29:14Z) - Spatial Attention Pyramid Network for Unsupervised Domain Adaptation [66.75008386980869]
教師なし領域適応は様々なコンピュータビジョンタスクにおいて重要である。
教師なし領域適応のための新しい空間注意ピラミッドネットワークを設計する。
我々の手法は最先端の手法に対して大きなマージンで好適に機能する。
論文 参考訳(メタデータ) (2020-03-29T09:03:23Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
領域適応法は、2つの領域間の分布がシフトし、それを認識しようとすると仮定する。
グラフ埋め込みに基づく汎用フレームワークを提案する。
提案手法が強力なドメイン適応フレームワークにつながることを示す。
論文 参考訳(メタデータ) (2020-03-09T12:25:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。