論文の概要: Modelling Heterogeneity Using Bayesian Structured Sparsity
- arxiv url: http://arxiv.org/abs/2103.15919v1
- Date: Mon, 29 Mar 2021 19:54:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-31 14:33:56.127274
- Title: Modelling Heterogeneity Using Bayesian Structured Sparsity
- Title(参考訳): ベイズ構造スパルシティを用いた不均質性モデリング
- Authors: Max Goplerud
- Abstract要約: 観察間で異なる変数の効果を推定する方法は、政治科学において重要な問題です。
本稿では,複雑な現象(同様の現象を離散群に展開する観測)を回帰分析に組み込む共通の方法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: How to estimate heterogeneity, e.g. the effect of some variable differing
across observations, is a key question in political science. Methods for doing
so make simplifying assumptions about the underlying nature of the
heterogeneity to draw reliable inferences. This paper allows a common way of
simplifying complex phenomenon (placing observations with similar effects into
discrete groups) to be integrated into regression analysis. The framework
allows researchers to (i) use their prior knowledge to guide which groups are
permissible and (ii) appropriately quantify uncertainty. The paper does this by
extending work on "structured sparsity" from a traditional penalized likelihood
approach to a Bayesian one by deriving new theoretical results and inferential
techniques. It shows that this method outperforms state-of-the-art methods for
estimating heterogeneous effects when the underlying heterogeneity is grouped
and more effectively identifies groups of observations with different effects
in observational data.
- Abstract(参考訳): 異質性をどのように見積もるか、例えば
観察によって異なる変数の効果は 政治科学において重要な問題です
そうする方法は、不均一性の基礎となる性質に関する仮定を単純化し、信頼できる推論を引き出す。
本稿では,複雑な現象(同様の現象を離散群に展開する観測)を回帰分析に組み込む共通の方法を提案する。
この枠組みにより、研究者は(i)どのグループが許容可能か、(ii)不確実性を適切に定量化するために、事前の知識を利用することができる。
論文は、従来のペナル化可能性アプローチからベイズ的アプローチへの「構造化された空間性」の研究を、新しい理論的結果と推論技術から導出した。
本手法は, 基礎となる異種性がグループ化されている場合の異種効果を推定するための最先端手法よりも優れており, 観測データに異なる効果を持つ観測群をより効果的に同定できることを示す。
関連論文リスト
- A General Causal Inference Framework for Cross-Sectional Observational Data [0.4972323953932129]
断面観測データに特化して設計された一般因果推論(GCI)フレームワーク。
本稿では,断面観測データを対象としたGCIフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-28T14:26:27Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
因果表現学習は、低レベルの観測データから潜伏した高レベルの因果表現を明らかにすることを目指している。
因果表現の識別可能性に寄与する分布シフトのタイプを決定する。
本稿では,本研究の成果を実用的なアルゴリズムに翻訳し,信頼性の高い潜在因果表現の取得を可能にする。
論文 参考訳(メタデータ) (2024-03-23T04:13:55Z) - Nonparametric Partial Disentanglement via Mechanism Sparsity: Sparse
Actions, Interventions and Sparse Temporal Dependencies [58.179981892921056]
この研究は、メカニズムのスパーシティ正則化(英語版)と呼ばれる、アンタングルメントの新たな原理を導入する。
本稿では,潜在要因を同時に学習することで,絡み合いを誘発する表現学習手法を提案する。
学習した因果グラフをスパースに規則化することにより、潜伏因子を復元できることを示す。
論文 参考訳(メタデータ) (2024-01-10T02:38:21Z) - Combining propensity score methods with variational autoencoders for
generating synthetic data in presence of latent sub-groups [0.0]
ヘテロジニティは、例えば、サブグループラベルによって示されるように知られ、あるいは未知であり、双曲性や歪みのような分布の性質にのみ反映されるかもしれない。
本研究では,変分オートエンコーダ(VAE)から合成データを取得する際に,このような異種性をどのように保存し,制御するかを検討する。
論文 参考訳(メタデータ) (2023-12-12T22:49:24Z) - Causal Discovery in Heterogeneous Environments Under the Sparse
Mechanism Shift Hypothesis [7.895866278697778]
機械学習のアプローチは、一般に独立で同一に分散されたデータ(すなわち、d)の仮定に依存する。
実際、この仮定は環境間の分散シフトによってほとんど常に破られる。
そこで我々は,様々な経験的推定器に適用可能なスコアベースアプローチであるメカニズムシフトスコア(MSS)を提案する。
論文 参考訳(メタデータ) (2022-06-04T15:39:30Z) - Discovering Latent Causal Variables via Mechanism Sparsity: A New
Principle for Nonlinear ICA [81.4991350761909]
ICA(Independent component analysis)は、この目的を定式化し、実用的な応用のための推定手順を提供する手法の集合を指す。
潜伏変数は、潜伏機構をスパースに正則化すれば、置換まで復元可能であることを示す。
論文 参考訳(メタデータ) (2021-07-21T14:22:14Z) - On Inductive Biases for Heterogeneous Treatment Effect Estimation [91.3755431537592]
我々は、異なる治療下で、個人の潜在的成果(PO)の構造的類似性を利用する方法について検討する。
この問題を克服するために、エンドツーエンドの学習戦略を3つ比較する。
論文 参考訳(メタデータ) (2021-06-07T16:30:46Z) - Learning Disentangled Representations with Latent Variation
Predictability [102.4163768995288]
本稿では,潜在不整合表現の変動予測可能性について述べる。
逆生成プロセス内では、潜時変動と対応する画像対の相互情報を最大化することにより、変動予測可能性を高める。
本研究では,潜在表現の絡み合いを測るために,基礎的構造的生成因子に依存しない評価指標を開発する。
論文 参考訳(メタデータ) (2020-07-25T08:54:26Z) - Latent Instrumental Variables as Priors in Causal Inference based on
Independence of Cause and Mechanism [2.28438857884398]
因果図形構造における潜時楽器変数や隠蔽共通原因などの潜時変数の役割について検討する。
2つの変数間の因果関係を推論する新しいアルゴリズムを導出する。
論文 参考訳(メタデータ) (2020-07-17T08:18:19Z) - Pursuing Sources of Heterogeneity in Modeling Clustered Population [16.936362485508774]
不均一な追従と特徴選択を同時に達成するために、正規化有限混合効果回帰を提案する。
これらの効果の制約付きスパース推定は、共通の効果を持つ変数と不均一な効果を持つ変数の両方を同定する。
アルツハイマー病の遺伝的要因と脳の特徴を関連付けるための画像遺伝学研究、青年期における自殺リスクと学区の特徴との関係を探る公衆衛生学研究、野球選手の給与水準がパフォーマンスと契約状態とどのように関連しているかを理解するためのスポーツ分析研究の3つの応用が提示されている。
論文 参考訳(メタデータ) (2020-03-10T14:59:35Z) - Almost-Matching-Exactly for Treatment Effect Estimation under Network
Interference [73.23326654892963]
本研究では,観測ネットワーク上でユニットが接続されたランダム化実験から直接処理効果を回復するマッチング手法を提案する。
本手法は, 近傍グラフ内の一意部分グラフの個数にほぼ一致する。
論文 参考訳(メタデータ) (2020-03-02T15:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。