論文の概要: An Overview of Human Activity Recognition Using Wearable Sensors:
Healthcare and Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2103.15990v1
- Date: Mon, 29 Mar 2021 23:48:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-31 14:36:44.224299
- Title: An Overview of Human Activity Recognition Using Wearable Sensors:
Healthcare and Artificial Intelligence
- Title(参考訳): ウェアラブルセンサを用いた人間の活動認識の概観:医療と人工知能
- Authors: Rex Liu, Albara Ah Ramli, Huanle Zhang, Esha Datta, Xin Liu
- Abstract要約: ヒューマンアクティビティ認識(HAR)は、セキュリティや監視、人間とロボットのインタラクション、エンターテイメントなど、さまざまな分野に適用されている。
私たちは、集中治療ユニット(ICU)患者とデュシェンヌ筋ジストロフィー(DMD)患者のための人間の活動の識別:ヘルスケアのための新しいHARプロジェクトを紹介します。
当社のHARシステムには、ICU患者およびDMD患者からセンサーデータを収集するハードウェア設計と、患者の活動を認識するための正確なAIモデルが含まれます。
- 参考スコア(独自算出の注目度): 4.04762671215916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of the internet of things (IoT) and artificial
intelligence (AI) technologies, human activity recognition (HAR) has been
applied in a variety of domains such as security and surveillance, human-robot
interaction, and entertainment. Even though a number of surveys and review
papers have been published, there is a lack of HAR overview paper focusing on
healthcare applications that use wearable sensors. Therefore, we fill in the
gap by presenting this overview paper. In particular, we present our emerging
HAR projects for healthcare: identification of human activities for intensive
care unit (ICU) patients and Duchenne muscular dystrophy (DMD) patients. Our
HAR systems include hardware design to collect sensor data from ICU patients
and DMD patients and accurate AI models to recognize patients' activities. This
overview paper covers considerations and settings for building a HAR healthcare
system, including sensor factors, AI model comparison, and system challenges.
- Abstract(参考訳): モノのインターネット(IoT)と人工知能(AI)技術の急速な発展に伴い、ヒューマンアクティビティ認識(HAR)は、セキュリティや監視、人間とロボットのインタラクション、エンターテイメントなど、さまざまな分野に適用されている。
多くの調査やレビュー論文が公表されているが、ウェアラブルセンサーを使用する医療アプリケーションに焦点を当てたhar概要論文が不足している。
そこで,本論文の概要を述べることにより,そのギャップを埋める。
特に,集中治療室 (ICU) 患者とデュシェンヌ型筋ジストロフィー (DMD) 患者に対するヒト活動の同定を行った。
我々のHARシステムには、ICU患者やDMD患者からセンサデータを収集するハードウェア設計と、患者の活動を認識するための正確なAIモデルが含まれています。
本稿では,センサファクタ,aiモデル比較,システム課題など,har医療システム構築のための考慮事項と設定について概説する。
関連論文リスト
- A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Generative AI-Driven Human Digital Twin in IoT-Healthcare: A Comprehensive Survey [53.691704671844406]
IoT(Internet of Things)は、特にヘルスケアにおいて、人間の生活の質を大幅に向上させる。
ヒトデジタルツイン(HDT)は、個体の複製を包括的に特徴付ける革新的なパラダイムとして提案されている。
HDTは、多用途で生き生きとした人間のデジタルテストベッドとして機能することで、医療監視の応用を超えて、IoTヘルスの強化を図っている。
最近、生成人工知能(GAI)は、高度なAIアルゴリズムを利用して、多種多様なデータを自動的に生成、操作、修正できるため、有望なソリューションである可能性がある。
論文 参考訳(メタデータ) (2024-01-22T03:17:41Z) - A Health Monitoring System Based on Flexible Triboelectric Sensors for
Intelligence Medical Internet of Things and its Applications in Virtual
Reality [4.522609963399036]
Internet of Medical Things (IoMT)は、IoT(Internet of Things)テクノロジと医療アプリケーションを組み合わせたプラットフォームである。
本研究では、フレキシブルな三体電センサと深層学習支援データ分析の相乗的統合により、堅牢でインテリジェントなIoMTシステムを設計した。
パーキンソン病(PD)患者の手首の動きを検知・解析するために4つの三体電センサをリストバンドに組み込んだ。
この革新的なアプローチにより、PD患者の微妙な動きと微妙な運動を正確に捉え、精査することが可能となり、患者の状況に対する洞察と総合的な評価が得られた。
論文 参考訳(メタデータ) (2023-09-13T01:01:16Z) - A Revolution of Personalized Healthcare: Enabling Human Digital Twin
with Mobile AIGC [54.74071593520785]
モバイルAIGCは、ヒューマンデジタルツイン(HDT)と呼ばれる新興アプリケーションのキーとなる技術である
モバイルAIGCによって強化されたHDTは、まれな疾患データを生成し、高忠実なデジタルツインをモデル化し、多目的テストベッドを構築し、24/7のカスタマイズ医療サービスを提供することで、パーソナライズされたヘルスケアに革命をもたらすことが期待されている。
論文 参考訳(メタデータ) (2023-07-22T15:59:03Z) - AI-Enhanced Intensive Care Unit: Revolutionizing Patient Care with Pervasive Sensing [2.7503982558916906]
集中治療室 (ICU) は、重篤な患者が集中治療や監視を受ける特別な病院空間である。
包括的モニタリングは、患者の状態、特に明度、究極的にはケアの質を評価する上で必須である。
現在、表情、姿勢、移動といった細部を含む視力評価は散発的に捉えられるか、全く捉えられていない。
論文 参考訳(メタデータ) (2023-03-11T00:25:55Z) - Remote patient monitoring using artificial intelligence: Current state,
applications, and challenges [13.516357215412024]
本研究の目的は,導入技術,RPMに対するAIの影響,AI対応RPMの課題と動向など,RPMシステムの総合的なレビューを行うことである。
RPMにおけるAIの役割は、身体活動の分類から慢性疾患のモニタリング、緊急時におけるバイタルサインのモニタリングまで様々である。
このレビュー結果は、AI対応のRPMアーキテクチャが医療モニタリングアプリケーションを変革したことを示している。
論文 参考訳(メタデータ) (2023-01-19T06:22:14Z) - What Do End-Users Really Want? Investigation of Human-Centered XAI for
Mobile Health Apps [69.53730499849023]
説明可能なAI(XAI)を評価するために,ユーザ中心のペルソナ概念を提案する。
分析の結果,ユーザの人口統計や性格,説明のタイプ,影響説明の嗜好が示された。
私たちの洞察は、対話的で人間中心のXAIを実践的な応用に近づけます。
論文 参考訳(メタデータ) (2022-10-07T12:51:27Z) - Reducing a complex two-sided smartwatch examination for Parkinson's
Disease to an efficient one-sided examination preserving machine learning
accuracy [63.20765930558542]
パーキンソン病(PD)研究における技術ベースアセスメントの実施状況について報告した。
本研究は、両手同期スマートウォッチ測定におけるPDサンプルサイズとして最大である。
論文 参考訳(メタデータ) (2022-05-11T09:12:59Z) - Leveraging Human Selective Attention for Medical Image Analysis with
Limited Training Data [72.1187887376849]
選択的な注意機構は、注意散らしの存在を無視することで、認知システムがタスク関連視覚的手がかりに焦点を合わせるのに役立つ。
本稿では,医療画像解析タスクにおいて,小さなトレーニングデータを用いたガベージを利用したフレームワークを提案する。
本手法は腫瘍の3次元分割と2次元胸部X線分類において優れた性能を示す。
論文 参考訳(メタデータ) (2021-12-02T07:55:25Z) - Developing Medical AI : a cloud-native audio-visual data collection
study [0.0]
本稿では、音声・視覚データ収集研究のためのプロトコル、そのようなデータを効率的に処理・消費するためのクラウドアーキテクチャ、および特定のデータ収集装置の設計について述べる。
本研究の目的は, 当院における退院患者の早期診断を改善することである。
論文 参考訳(メタデータ) (2021-08-17T18:01:12Z) - AutoCogniSys: IoT Assisted Context-Aware Automatic Cognitive Health
Assessment [2.7998963147546148]
AutoCogniSysは、コンテキスト対応の自動認知ヘルスアセスメントシステムである。
我々は,高齢者の生活環境における認知的健康度自動評価システムを開発した。
AutoCogniSysのパフォーマンスは、高齢者の認知健康度を評価する際の精度の最大93%を証明している。
論文 参考訳(メタデータ) (2020-03-17T01:44:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。