論文の概要: Thermal Neural Networks: Lumped-Parameter Thermal Modeling With
State-Space Machine Learning
- arxiv url: http://arxiv.org/abs/2103.16323v1
- Date: Tue, 30 Mar 2021 13:15:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-31 14:31:44.632257
- Title: Thermal Neural Networks: Lumped-Parameter Thermal Modeling With
State-Space Machine Learning
- Title(参考訳): 熱ニューラルネットワーク:状態空間機械学習による集中パラメータ熱モデリング
- Authors: Wilhelm Kirchg\"assner, Oliver Wallscheid, Joachim B\"ocker
- Abstract要約: 電力システムの熱モデルには、リアルタイム能力と高い推定精度の両方が必要である。
本研究では,熱伝達に基づくラムド型パラメータモデルとして,熱ニューラルネットワーク(TNN)を導入し,両者を統一した。
TNNは状態空間表現を通じて物理的に解釈可能な状態を持ち、エンドツーエンドのトレーニング可能であり、その設計に材料、幾何学、専門知識を必要としない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With electric power systems becoming more compact and increasingly powerful,
the relevance of thermal stress especially during overload operation is
expected to increase ceaselessly. Whenever critical temperatures cannot be
measured economically on a sensor base, a thermal model lends itself to
estimate those unknown quantities. Thermal models for electric power systems
are usually required to be both, real-time capable and of high estimation
accuracy. Moreover, ease of implementation and time to production play an
increasingly important role. In this work, the thermal neural network (TNN) is
introduced, which unifies both, consolidated knowledge in the form of
heat-transfer-based lumped-parameter models, and data-driven nonlinear function
approximation with supervised machine learning. A quasi-linear
parameter-varying system is identified solely from empirical data, where
relationships between scheduling variables and system matrices are inferred
statistically and automatically. At the same time, a TNN has physically
interpretable states through its state-space representation, is end-to-end
trainable -- similar to deep learning models -- with automatic differentiation,
and requires no material, geometry, nor expert knowledge for its design.
Experiments on an electric motor data set show that a TNN achieves higher
temperature estimation accuracies than previous white-/grey- or black-box
models with a mean squared error of $3.18~\text{K}^2$ and a worst-case error of
$5.84~\text{K}$ at 64 model parameters.
- Abstract(参考訳): 電力系統がよりコンパクトで強力になるにつれて、過負荷時の熱応力の関連性は絶え間なく増大すると予想される。
臨界温度がセンサベースで経済的に測定できない場合、熱モデルはそれらの未知の量を推定するのに役立つ。
電力系統の熱モデルは通常、リアルタイム能力と高い推定精度の両方を必要とする。
さらに、実装の容易さと運用までの時間がますます重要な役割を果たす。
本研究では,熱伝達型集中定数モデルと教師付き機械学習によるデータ駆動非線形関数近似という2つの知識を統合した熱ニューラルネットワーク(tnn)を提案する。
準線形パラメータ変動システムは、スケジューリング変数とシステム行列の関係を統計的かつ自動的に推測する経験的データのみから同定される。
同時に、TNNは状態空間の表現を通じて物理的に解釈可能な状態を持ち、ディープラーニングモデルに似た、エンドツーエンドのトレーニングが可能で、自動的な微分があり、その設計に材料、幾何学、専門家の知識を必要としない。
実験では、tnnが以前のホワイト/グレーまたはブラックボックスモデルよりも高い温度推定精度を達成し、平均二乗誤差は3.18〜\text{k}^2$、最悪の場合誤差は64のモデルパラメータで5.84〜\text{k}$である。
関連論文リスト
- Hybrid Adaptive Modeling using Neural Networks Trained with Nonlinear Dynamics Based Features [5.652228574188242]
本稿では,非線形動的モデリングから情報を明らかにし,それをデータベースモデルに組み込むことにより,標準手法から逸脱する新しいアプローチを提案する。
摂動法による非線形力学現象を明示的に取り入れることにより、予測能力はブルートフォース数値シミュレーションから得られた知識と比較してより現実的で洞察力が高い。
論文 参考訳(メタデータ) (2025-01-21T02:38:28Z) - Thermal-Mechanical Physics Informed Deep Learning For Fast Prediction of Thermal Stress Evolution in Laser Metal Deposition [0.0]
金属添加物製造(AM)における熱応力の進化を理解することは高品質な部品の製造に不可欠である。
機械学習(ML)の最近の進歩は、金属AMの複雑な多物理問題をモデル化する大きな可能性を示している。
本研究では、物理法則を深層ニューラルネットワーク(NN)に組み込んだ物理インフォームドニューラルネットワーク(PINN)フレームワークを導入し、温度と熱応力の進化を予測する。
論文 参考訳(メタデータ) (2024-12-25T05:37:48Z) - Gridded Transformer Neural Processes for Large Unstructured Spatio-Temporal Data [47.14384085714576]
本稿では,非構造化観測を行うための格子状擬似トークンPと,効率的な注意機構を利用する格子状擬似トークンを含むプロセッサを紹介する。
提案手法は,大規模データを含む様々な合成および実世界の回帰タスクにおいて,強いベースラインを一貫して上回る。
実生活実験は気象データに基づいて行われ、気象モデルパイプラインで大規模に適用した場合の性能と計算上の利点をもたらすアプローチの可能性を示す。
論文 参考訳(メタデータ) (2024-10-09T10:00:56Z) - Physics-Informed Machine Learning Towards A Real-Time Spacecraft Thermal Simulator [15.313871831214902]
ここで提示されるPIMLモデルまたはハイブリッドモデルは、軌道上の熱負荷条件によって与えられるノイズの低減を予測するニューラルネットワークで構成されている。
我々は,ハイブリッドモデルの計算性能と精度を,データ駆動型ニューラルネットモデルと,地球周回小型宇宙船の高忠実度有限差分モデルと比較した。
PIMLベースのアクティブノダライゼーションアプローチは、ニューラルネットワークモデルや粗いメッシュモデルよりもはるかに優れた一般化を提供すると同時に、高忠実度モデルと比較して計算コストを最大1.7倍削減する。
論文 参考訳(メタデータ) (2024-07-08T16:38:52Z) - Towards Physically Consistent Deep Learning For Climate Model Parameterizations [46.07009109585047]
パラメータ化は、気候予測において、系統的なエラーと大きな不確実性の主な原因である。
深層学習(DL)に基づくパラメータ化は、計算に高価で高解像度のショートシミュレーションのデータに基づいて訓練されており、気候モデルを改善するための大きな可能性を示している。
本稿では,DLに基づくパラメータ化のための効率的な教師付き学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-06T10:02:49Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
ディープラーニングアルゴリズムは、PDEの高速解を得るための有効な代替手段として登場した。
モデルは通常、ソルバによって生成された合成データに基づいてトレーニングされ、ディスクに格納され、トレーニングのために読み返される。
ディープサロゲートモデルのためのオープンソースのオンライントレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-28T12:02:27Z) - MINN: Learning the dynamics of differential-algebraic equations and application to battery modeling [2.1303885995425635]
モデル統合ニューラルネットワーク(MINN)と呼ばれる新しい機械学習アーキテクチャを提案する。
MINNは偏微分代数方程式(PDAE)からなる一般自律系または非自律系の物理に基づくダイナミクスを学ぶ
提案したニューラルネットワークアーキテクチャを用いてリチウムイオン電池の電気化学的ダイナミクスをモデル化する。
論文 参考訳(メタデータ) (2023-04-27T09:11:40Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - On Energy-Based Models with Overparametrized Shallow Neural Networks [44.74000986284978]
エネルギーベースモデル(EBM)は、ジェネレーションモデリングの強力なフレームワークです。
この研究では、浅いニューラルネットワークに焦点を当てます。
我々は、いわゆる「アクティブ」体制で訓練されたモデルが、関連する「怠慢」またはカーネル体制に対して統計的に有利であることを示す。
論文 参考訳(メタデータ) (2021-04-15T15:34:58Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Data-Driven Permanent Magnet Temperature Estimation in Synchronous
Motors with Supervised Machine Learning [0.0]
自動車用永久磁石同期モータ(PMSM)における磁石温度のモニタリングは難しい課題である。
過熱によりモータの劣化が激しくなり、機械の制御戦略とその設計に高い懸念が生じる。
いくつかの機械学習(ML)モデルは、潜時高ダイナミックな磁力温度分布を予測するタスクにおいて、その推定精度を実証的に評価する。
論文 参考訳(メタデータ) (2020-01-17T11:41:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。