論文の概要: Physics-Informed Regularization for Domain-Agnostic Dynamical System Modeling
- arxiv url: http://arxiv.org/abs/2410.06366v1
- Date: Tue, 8 Oct 2024 21:04:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 06:09:19.672994
- Title: Physics-Informed Regularization for Domain-Agnostic Dynamical System Modeling
- Title(参考訳): 領域に依存しない力学系モデリングのための物理インフォームド正規化
- Authors: Zijie Huang, Wanjia Zhao, Jingdong Gao, Ziniu Hu, Xiao Luo, Yadi Cao, Yuanzhou Chen, Yizhou Sun, Wei Wang,
- Abstract要約: 本稿では,幅広い力学系に対して高精度なモデリングを実現するフレームワークを提案する。
保守的なシステムのエネルギーを保ちつつ、非保守的で可逆的なシステムの強い誘導バイアスとして機能する。
ニューラル常微分方程式モデルにTRS損失を組み込むことにより、提案モデルであるTREATは様々な物理系において優れた性能を示す。
- 参考スコア(独自算出の注目度): 41.82469276824927
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Learning complex physical dynamics purely from data is challenging due to the intrinsic properties of systems to be satisfied. Incorporating physics-informed priors, such as in Hamiltonian Neural Networks (HNNs), achieves high-precision modeling for energy-conservative systems. However, real-world systems often deviate from strict energy conservation and follow different physical priors. To address this, we present a framework that achieves high-precision modeling for a wide range of dynamical systems from the numerical aspect, by enforcing Time-Reversal Symmetry (TRS) via a novel regularization term. It helps preserve energies for conservative systems while serving as a strong inductive bias for non-conservative, reversible systems. While TRS is a domain-specific physical prior, we present the first theoretical proof that TRS loss can universally improve modeling accuracy by minimizing higher-order Taylor terms in ODE integration, which is numerically beneficial to various systems regardless of their properties, even for irreversible systems. By integrating the TRS loss within neural ordinary differential equation models, the proposed model TREAT demonstrates superior performance on diverse physical systems. It achieves a significant 11.5% MSE improvement in a challenging chaotic triple-pendulum scenario, underscoring TREAT's broad applicability and effectiveness.
- Abstract(参考訳): データから複雑な物理力学を純粋に学習することは、満たすべきシステムの本質的な性質のために困難である。
ハミルトニアンニューラルネットワーク(HNN)のような物理インフォームドプリエントを組み込むと、エネルギー保守系に対する高精度なモデリングが達成される。
しかし、現実世界のシステムは、しばしば厳密なエネルギー保存から逸脱し、異なる物理的前提に従う。
そこで本稿では,時間反転対称性(TRS)を新しい正規化項で適用することにより,数値的側面から広い範囲の力学系を高精度にモデル化するフレームワークを提案する。
保守的なシステムのエネルギーを保ちつつ、非保守的で可逆的なシステムの強い誘導バイアスとして機能する。
TRSはドメイン固有の物理先行概念であるが、ORD積分における高階テイラー項を最小化することにより、TRS損失がモデリング精度を普遍的に向上できるという最初の理論的証明を示す。
ニューラル常微分方程式モデルにTRS損失を組み込むことにより、提案モデルであるTREATは様々な物理系において優れた性能を示す。
これは、TREATの広範囲な適用性と有効性を裏付ける、挑戦的なカオス三重振り込みシナリオにおいて、11.5%のMSE改善を実現している。
関連論文リスト
- Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems [49.11170948406405]
ビデオからの自動パラメータ推定の最先端は、大規模データセット上で教師付きディープネットワークをトレーニングすることによって解決される。
単一ビデオから, 既知, 連続制御方程式の物理パラメータを推定する手法を提案する。
論文 参考訳(メタデータ) (2024-10-02T09:44:54Z) - Response Estimation and System Identification of Dynamical Systems via Physics-Informed Neural Networks [0.0]
本稿では,物理インフォームドニューラルネットワーク(PINN)を用いた力学系の同定と推定について検討する。
PINNは、既知の物理法則をニューラルネットワークの損失関数に直接埋め込むことによって、複雑な現象の単純な埋め込みを可能にするユニークな利点を提供する。
その結果、PINNは上記のすべてのタスクに対して、たとえモデルエラーがあっても、効率的なツールを提供することを示した。
論文 参考訳(メタデータ) (2024-10-02T08:58:30Z) - TANGO: Time-Reversal Latent GraphODE for Multi-Agent Dynamical Systems [43.39754726042369]
連続グラフニューラルネットワークに基づく常微分方程式(GraphODE)により予測される前後の軌跡を整列するソフト制約として,単純かつ効果的な自己監督型正規化項を提案する。
時間反転対称性を効果的に課し、古典力学の下でより広い範囲の力学系にわたってより正確なモデル予測を可能にする。
様々な物理システムに対する実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-10-10T08:52:16Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - MINN: Learning the dynamics of differential-algebraic equations and application to battery modeling [2.1303885995425635]
モデル統合ニューラルネットワーク(MINN)と呼ばれる新しい機械学習アーキテクチャを提案する。
MINNは偏微分代数方程式(PDAE)からなる一般自律系または非自律系の物理に基づくダイナミクスを学ぶ
提案したニューラルネットワークアーキテクチャを用いてリチウムイオン電池の電気化学的ダイナミクスをモデル化する。
論文 参考訳(メタデータ) (2023-04-27T09:11:40Z) - Physically Consistent Neural ODEs for Learning Multi-Physics Systems [0.0]
本稿では, 可逆ポート・ハミルトニアンシステム (IPHS) の枠組みを利用する。
データからパラメータを学習するために,PC-NODE(Physically Consistent NODE)を提案する。
提案手法の有効性を実世界の実測値から建物熱力学を学習し,その有効性を実証する。
論文 参考訳(メタデータ) (2022-11-11T11:20:35Z) - DySMHO: Data-Driven Discovery of Governing Equations for Dynamical
Systems via Moving Horizon Optimization [77.34726150561087]
本稿では,スケーラブルな機械学習フレームワークである移動水平最適化(DySMHO)による動的システムの発見について紹介する。
DySMHOは、基底関数の大きな辞書から基礎となる支配方程式を逐次学習する。
標準非線形力学系の例は、DySMHOが規則を正確に回復できることを示すために用いられる。
論文 参考訳(メタデータ) (2021-07-30T20:35:03Z) - Forced Variational Integrator Networks for Prediction and Control of
Mechanical Systems [7.538482310185133]
強制的変動積分器ネットワーク(FVIN)アーキテクチャにより,エネルギー散逸と外部強制を正確に考慮できることを示す。
これにより、高データ効率のモデルベース制御が可能となり、実際の非保守的なシステムで予測できる。
論文 参考訳(メタデータ) (2021-06-05T21:39:09Z) - Time-Reversal Symmetric ODE Network [138.02741983098454]
時間反転対称性は古典力学や量子力学においてしばしば保持される基本的な性質である。
本稿では,通常の微分方程式(ODE)ネットワークがこの時間反転対称性にどの程度よく適合しているかを測定する新しい損失関数を提案する。
時間反転対称性を完全に持たないシステムであっても, TRS-ODEN はベースラインよりも優れた予測性能が得られることを示す。
論文 参考訳(メタデータ) (2020-07-22T12:19:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。