論文の概要: Large-scale Neural Solvers for Partial Differential Equations
- arxiv url: http://arxiv.org/abs/2009.03730v1
- Date: Tue, 8 Sep 2020 13:26:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 21:20:50.557725
- Title: Large-scale Neural Solvers for Partial Differential Equations
- Title(参考訳): 部分微分方程式に対する大規模ニューラルソルバー
- Authors: Patrick Stiller and Friedrich Bethke and Maximilian B\"ohme and
Richard Pausch and Sunna Torge and Alexander Debus and Jan Vorberger and
Michael Bussmann and Nico Hoffmann
- Abstract要約: 偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
- 参考スコア(独自算出の注目度): 48.7576911714538
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving partial differential equations (PDE) is an indispensable part of many
branches of science as many processes can be modelled in terms of PDEs.
However, recent numerical solvers require manual discretization of the
underlying equation as well as sophisticated, tailored code for distributed
computing. Scanning the parameters of the underlying model significantly
increases the runtime as the simulations have to be cold-started for each
parameter configuration. Machine Learning based surrogate models denote
promising ways for learning complex relationship among input, parameter and
solution. However, recent generative neural networks require lots of training
data, i.e. full simulation runs making them costly. In contrast, we examine the
applicability of continuous, mesh-free neural solvers for partial differential
equations, physics-informed neural networks (PINNs) solely requiring
initial/boundary values and validation points for training but no simulation
data. The induced curse of dimensionality is approached by learning a domain
decomposition that steers the number of neurons per unit volume and
significantly improves runtime. Distributed training on large-scale cluster
systems also promises great utilization of large quantities of GPUs which we
assess by a comprehensive evaluation study. Finally, we discuss the accuracy of
GatedPINN with respect to analytical solutions -- as well as state-of-the-art
numerical solvers, such as spectral solvers.
- Abstract(参考訳): 偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
しかし、近年の数値解法では、基礎となる方程式の手動による離散化と、分散コンピューティングのための高度でカスタマイズされたコードが必要である。
基礎となるモデルのパラメータをスキャンすると、各パラメータ設定に対してシミュレーションを開始する必要があるため、ランタイムが大幅に増加する。
機械学習に基づく代理モデルは、入力、パラメータ、ソリューションの間の複雑な関係を学習するための有望な方法を示す。
しかし、最近の生成ニューラルネットワークは、多くのトレーニングデータを必要とする。
対照的に、偏微分方程式、物理インフォームドニューラルネットワーク(PINN)に対する連続的メッシュフリーニューラルネットワークの適用性について、初期/境界値とトレーニングのための検証ポイントのみを必要とするが、シミュレーションデータはない。
誘導された次元の呪いは、単位体積当たりのニューロン数を制御し、実行時間を大幅に改善するドメイン分解を学ぶことによってアプローチされる。
大規模クラスタシステム上での分散トレーニングは、包括的評価研究によって評価される大量のGPUの利用も約束する。
最後に,分析解に関してgatedpinnの精度と,スペクトル解法のような最先端の数値解法について考察する。
関連論文リスト
- Physics-informed MeshGraphNets (PI-MGNs): Neural finite element solvers
for non-stationary and nonlinear simulations on arbitrary meshes [13.41003911618347]
PI-MGNは、PINNとMGNを組み合わせて任意のメッシュ上の非定常および非線形偏微分方程式(PDE)を解くハイブリッドアプローチである。
結果は、モデルが大規模で複雑なメッシュにうまくスケールしていることを示しているが、小さなジェネリックメッシュでのみトレーニングされている。
論文 参考訳(メタデータ) (2024-02-16T13:34:51Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
ディープラーニングアルゴリズムは、PDEの高速解を得るための有効な代替手段として登場した。
モデルは通常、ソルバによって生成された合成データに基づいてトレーニングされ、ディスクに格納され、トレーニングのために読み返される。
ディープサロゲートモデルのためのオープンソースのオンライントレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-28T12:02:27Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Generalized Neural Closure Models with Interpretability [28.269731698116257]
我々は、統合された神経部分遅延微分方程式の新規で汎用的な方法論を開発した。
マルコフ型および非マルコフ型ニューラルネットワーク(NN)の閉包パラメータ化を用いて, 偏微分方程式(PDE)における既存/低忠実度力学モデルを直接拡張する。
本研究では, 非線形波動, 衝撃波, 海洋酸性化モデルに基づく4つの実験セットを用いて, 新しい一般化ニューラルクロージャモデル(gnCMs)の枠組みを実証する。
論文 参考訳(メタデータ) (2023-01-15T21:57:43Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Transfer Learning on Multi-Fidelity Data [0.0]
ニューラルネットワーク(NNs)は、しばしば複素系のダイナミクスを記述する部分微分方程式(PDEs)のサロゲートまたはエミュレータとして用いられる。
私たちは、トランスファーラーニングを用いた深層畳み込みNN(CNN)のトレーニングのためにデータ生成コストを削減するために、マルチファイダリティシミュレーションに依存しています。
数値実験により,比較的多数の低忠実度データと少ない高忠実度データとを混合することにより,計算速度と予測精度の最適バランスが得られた。
論文 参考訳(メタデータ) (2021-04-29T00:06:19Z) - Efficient training of physics-informed neural networks via importance
sampling [2.9005223064604078]
Physics-In Neural Networks(PINN)は、偏微分方程式(PDE)によって制御されるシステムを計算するために訓練されているディープニューラルネットワークのクラスである。
重要サンプリング手法により,PINN訓練の収束挙動が改善されることが示唆された。
論文 参考訳(メタデータ) (2021-04-26T02:45:10Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。