Automatic airway segmentation from Computed Tomography using robust and
efficient 3-D convolutional neural networks
- URL: http://arxiv.org/abs/2103.16328v1
- Date: Tue, 30 Mar 2021 13:21:02 GMT
- Title: Automatic airway segmentation from Computed Tomography using robust and
efficient 3-D convolutional neural networks
- Authors: A. Garcia-Uceda Juarez, R. Selvan, Z. Saghir, H.A.W.M. Tiddens, M. de
Bruijne
- Abstract summary: We present a fully automatic and end-to-end optimised airway segmentation method for thoracic computed tomography.
We use a simple and low-memory 3D U-Net as backbone, which allows the method to process large 3D image patches.
We show that our method can extract highly complete airway trees with few false positive errors.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a fully automatic and end-to-end optimised airway
segmentation method for thoracic computed tomography, based on the U-Net
architecture. We use a simple and low-memory 3D U-Net as backbone, which allows
the method to process large 3D image patches, often comprising full lungs, in a
single pass through the network. This makes the method simple, robust and
efficient. We validated the proposed method on three datasets with very
different characteristics and various airway abnormalities: i) a dataset of
pediatric patients including subjects with cystic fibrosis, ii) a subset of the
Danish Lung Cancer Screening Trial, including subjects with chronic obstructive
pulmonary disease, and iii) the EXACT'09 public dataset. We compared our method
with other state-of-the-art airway segmentation methods, including relevant
learning-based methods in the literature evaluated on the EXACT'09 data. We
show that our method can extract highly complete airway trees with few false
positive errors, on scans from both healthy and diseased subjects, and also
that the method generalizes well across different datasets. On the EXACT'09
test set, our method achieved the second highest sensitivity score among all
methods that reported good specificity.
Related papers
- Enhancing Weakly Supervised 3D Medical Image Segmentation through
Probabilistic-aware Learning [52.249748801637196]
3D medical image segmentation is a challenging task with crucial implications for disease diagnosis and treatment planning.
Recent advances in deep learning have significantly enhanced fully supervised medical image segmentation.
We propose a novel probabilistic-aware weakly supervised learning pipeline, specifically designed for 3D medical imaging.
arXiv Detail & Related papers (2024-03-05T00:46:53Z) - Interpolation-Split: a data-centric deep learning approach with big interpolated data to boost airway segmentation performance [6.015272528297327]
airway segmentation plays a critical role in the production of the outline of the entire airway tree.
In this study, we propose a data-centric deep learning technique to segment the airway tree.
arXiv Detail & Related papers (2023-07-29T14:51:56Z) - Towards Unifying Anatomy Segmentation: Automated Generation of a
Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines [113.08940153125616]
We generate a dataset of whole-body CT scans with $142$ voxel-level labels for 533 volumes providing comprehensive anatomical coverage.
Our proposed procedure does not rely on manual annotation during the label aggregation stage.
We release our trained unified anatomical segmentation model capable of predicting $142$ anatomical structures on CT data.
arXiv Detail & Related papers (2023-07-25T09:48:13Z) - Extraction of volumetric indices from echocardiography: which deep
learning solution for clinical use? [6.144041824426555]
We show that the proposed 3D nnU-Net outperforms alternative 2D and recurrent segmentation methods.
Overall, the experimental results suggest that with sufficient training data, 3D nnU-Net could become the first automated tool to meet the standards of an everyday clinical device.
arXiv Detail & Related papers (2023-05-03T09:38:52Z) - CT-LungNet: A Deep Learning Framework for Precise Lung Tissue
Segmentation in 3D Thoracic CT Scans [1.1014741301167645]
This paper presents a fully automatic method that identifies the lungs in 3D pulmonary CT images using deep networks and transfer learning.
Our method was quantitatively assessed using one public dataset, LUNA16, for training and testing and two public datasets, namely, VESSEL12 and CRPF, only for testing.
arXiv Detail & Related papers (2022-12-28T17:37:08Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
We propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed.
The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features.
Our evaluations on five benchmarks, Synapse, BTCV, ACDC, BRaTs, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2022-12-08T18:59:57Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Pulmonary Vessel Segmentation based on Orthogonal Fused U-Net++ of Chest
CT Images [1.8692254863855962]
We present an effective framework and refinement process of pulmonary vessel segmentation from chest computed tomographic (CT) images.
The key to our approach is a 2.5D segmentation network applied from three axes, which presents a robust and fully automated pulmonary vessel segmentation result.
Our method outperforms other network structures by a large margin and achieves by far the highest average DICE score of 0.9272 and precision of 0.9310.
arXiv Detail & Related papers (2021-07-03T21:46:29Z) - Automatic CT Segmentation from Bounding Box Annotations using
Convolutional Neural Networks [2.554905387213585]
The proposed method is composed of two steps: 1) generating pseudo masks with bounding box annotations by k-means clustering, and 2) iteratively training a 3D U-Net convolutional neural network as a segmentation model.
For liver, spleen and kidney segmentation, it achieved an accuracy of 95.19%, 92.11%, and 91.45%, respectively.
arXiv Detail & Related papers (2021-05-29T14:48:16Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
We propose a two-stage framework, with the first stage to quickly localize the prostate region and the second stage to precisely segment the prostate.
We introduce a novel online metric learning module through voxel-wise sampling in the multi-task network.
Our method can effectively learn more representative voxel-level features compared with the conventional learning methods with cross-entropy or Dice loss.
arXiv Detail & Related papers (2020-05-15T10:37:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.