Automatic CT Segmentation from Bounding Box Annotations using
Convolutional Neural Networks
- URL: http://arxiv.org/abs/2105.14314v2
- Date: Tue, 1 Jun 2021 16:06:47 GMT
- Title: Automatic CT Segmentation from Bounding Box Annotations using
Convolutional Neural Networks
- Authors: Yuanpeng Liu, Qinglei Hui, Zhiyi Peng, Shaolin Gong and Dexing Kong
- Abstract summary: The proposed method is composed of two steps: 1) generating pseudo masks with bounding box annotations by k-means clustering, and 2) iteratively training a 3D U-Net convolutional neural network as a segmentation model.
For liver, spleen and kidney segmentation, it achieved an accuracy of 95.19%, 92.11%, and 91.45%, respectively.
- Score: 2.554905387213585
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate segmentation for medical images is important for clinical diagnosis.
Existing automatic segmentation methods are mainly based on fully supervised
learning and have an extremely high demand for precise annotations, which are
very costly and time-consuming to obtain. To address this problem, we proposed
an automatic CT segmentation method based on weakly supervised learning, by
which one could train an accurate segmentation model only with weak annotations
in the form of bounding boxes. The proposed method is composed of two steps: 1)
generating pseudo masks with bounding box annotations by k-means clustering,
and 2) iteratively training a 3D U-Net convolutional neural network as a
segmentation model. Some data pre-processing methods are used to improve
performance. The method was validated on four datasets containing three types
of organs with a total of 627 CT volumes. For liver, spleen and kidney
segmentation, it achieved an accuracy of 95.19%, 92.11%, and 91.45%,
respectively. Experimental results demonstrate that our method is accurate,
efficient, and suitable for clinical use.
Related papers
- Towards Unifying Anatomy Segmentation: Automated Generation of a
Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines [113.08940153125616]
We generate a dataset of whole-body CT scans with $142$ voxel-level labels for 533 volumes providing comprehensive anatomical coverage.
Our proposed procedure does not rely on manual annotation during the label aggregation stage.
We release our trained unified anatomical segmentation model capable of predicting $142$ anatomical structures on CT data.
arXiv Detail & Related papers (2023-07-25T09:48:13Z) - An Efficient End-to-End Deep Neural Network for Interstitial Lung
Disease Recognition and Classification [0.5424799109837065]
This paper introduces an end-to-end deep convolution neural network (CNN) for classifying ILDs patterns.
The proposed model comprises four convolutional layers with different kernel sizes and Rectified Linear Unit (ReLU) activation function.
A dataset consisting of 21328 image patches of 128 CT scans with five classes is taken to train and assess the proposed model.
arXiv Detail & Related papers (2022-04-21T06:36:10Z) - Multi-organ Segmentation Network with Adversarial Performance Validator [10.775440368500416]
This paper introduces an adversarial performance validation network into a 2D-to-3D segmentation framework.
The proposed network converts the 2D-coarse result to 3D high-quality segmentation masks in a coarse-to-fine manner, allowing joint optimization to improve segmentation accuracy.
Experiments on the NIH pancreas segmentation dataset demonstrate the proposed network achieves state-of-the-art accuracy on small organ segmentation and outperforms the previous best.
arXiv Detail & Related papers (2022-04-16T18:00:29Z) - Localized Perturbations For Weakly-Supervised Segmentation of Glioma
Brain Tumours [0.5801621787540266]
This work proposes the use of localized perturbations as a weakly-supervised solution to extract segmentation masks of brain tumours from a pretrained 3D classification model.
We also propose a novel optimal perturbation method that exploits 3D superpixels to find the most relevant area for a given classification using a U-net architecture.
arXiv Detail & Related papers (2021-11-29T21:01:20Z) - Automatic Foot Ulcer segmentation Using an Ensemble of Convolutional
Neural Networks [3.037637906402173]
We propose an ensemble approach based on two encoder-decoder-based CNN models, namely LinkNet and UNet, to perform foot ulcer segmentation.
Our method achieved state-of-the-art data-based Dice scores of 92.07% and 88.80%, respectively.
arXiv Detail & Related papers (2021-09-03T09:55:04Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
We present a novel cascaded robust learning framework for chest X-ray segmentation with imperfect annotation.
Our model consists of three independent network, which can effectively learn useful information from the peer networks.
Our methods could achieve a significant improvement on the accuracy in segmentation tasks compared to the previous methods.
arXiv Detail & Related papers (2021-04-05T15:50:16Z) - Automatic airway segmentation from Computed Tomography using robust and
efficient 3-D convolutional neural networks [0.0]
We present a fully automatic and end-to-end optimised airway segmentation method for thoracic computed tomography.
We use a simple and low-memory 3D U-Net as backbone, which allows the method to process large 3D image patches.
We show that our method can extract highly complete airway trees with few false positive errors.
arXiv Detail & Related papers (2021-03-30T13:21:02Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
We propose a novel Frustum ultrasound based catheter segmentation method.
The proposed method achieved the state-of-the-art performance with an efficiency of 0.25 second per volume.
arXiv Detail & Related papers (2020-10-19T13:56:22Z) - Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images [51.893494939675314]
We propose a novel weakly supervised segmentation framework based on partial points annotation.
We show that our method can achieve competitive performance compared to the fully supervised counterpart and the state-of-the-art methods.
arXiv Detail & Related papers (2020-07-10T15:41:29Z) - Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid
Constrained Semi-Supervised Learning and Dual-UNet [74.22397862400177]
We propose a novel catheter segmentation approach, which requests fewer annotations than the supervised learning method.
Our scheme considers a deep Q learning as the pre-localization step, which avoids voxel-level annotation.
With the detected catheter, patch-based Dual-UNet is applied to segment the catheter in 3D volumetric data.
arXiv Detail & Related papers (2020-06-25T21:10:04Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
This work investigates the potential of autoencoder-extracted features to improve segmentation with a convolutional neural network.
A convolutional autoencoder was used to extract features from unlabeled data and a multi-scale, fully convolutional CNN was used to perform the target task of 3D liver segmentation in CT images.
arXiv Detail & Related papers (2020-03-17T20:20:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.