Interpolation-Split: a data-centric deep learning approach with big interpolated data to boost airway segmentation performance
- URL: http://arxiv.org/abs/2308.00008v2
- Date: Tue, 23 Jul 2024 11:02:52 GMT
- Title: Interpolation-Split: a data-centric deep learning approach with big interpolated data to boost airway segmentation performance
- Authors: Wing Keung Cheung, Ashkan Pakzad, Nesrin Mogulkoc, Sarah Needleman, Bojidar Rangelov, Eyjolfur Gudmundsson, An Zhao, Mariam Abbas, Davina McLaverty, Dimitrios Asimakopoulos, Robert Chapman, Recep Savas, Sam M Janes, Yipeng Hu, Daniel C. Alexander, John R Hurst, Joseph Jacob,
- Abstract summary: airway segmentation plays a critical role in the production of the outline of the entire airway tree.
In this study, we propose a data-centric deep learning technique to segment the airway tree.
- Score: 6.015272528297327
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The morphology and distribution of airway tree abnormalities enables diagnosis and disease characterisation across a variety of chronic respiratory conditions. In this regard, airway segmentation plays a critical role in the production of the outline of the entire airway tree to enable estimation of disease extent and severity. In this study, we propose a data-centric deep learning technique to segment the airway tree. The proposed technique utilises interpolation and image split to improve data usefulness and quality. Then, an ensemble learning strategy is implemented to aggregate the segmented airway trees at different scales. In terms of segmentation performance (dice similarity coefficient), our method outperforms the baseline model by 2.5% on average when a combined loss is used. Further, our proposed technique has a low GPU usage and high flexibility enabling it to be deployed on any 2D deep learning model.
Related papers
- AD-Net: Attention-based dilated convolutional residual network with guided decoder for robust skin lesion segmentation [0.0]
This research presents a robust approach utilizing a dilated convolutional residual network.
It incorporates an attention-based spatial feature enhancement block (ASFEB) and employs a guided decoder strategy.
The effectiveness of the proposed AD-Net was evaluated using four public benchmark datasets.
arXiv Detail & Related papers (2024-09-09T08:21:17Z) - ARHNet: Adaptive Region Harmonization for Lesion-aware Augmentation to
Improve Segmentation Performance [61.04246102067351]
We propose a foreground harmonization framework (ARHNet) to tackle intensity disparities and make synthetic images look more realistic.
We demonstrate the efficacy of our method in improving the segmentation performance using real and synthetic images.
arXiv Detail & Related papers (2023-07-02T10:39:29Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - SegPrompt: Using Segmentation Map as a Better Prompt to Finetune Deep
Models for Kidney Stone Classification [62.403510793388705]
Deep learning has produced encouraging results for kidney stone classification using endoscope images.
The shortage of annotated training data poses a severe problem in improving the performance and generalization ability of the trained model.
We propose SegPrompt to alleviate the data shortage problems by exploiting segmentation maps from two aspects.
arXiv Detail & Related papers (2023-03-15T01:30:48Z) - Differentiable Topology-Preserved Distance Transform for Pulmonary
Airway Segmentation [34.22415353209505]
We propose a Differentiable Topology-Preserved Distance Transform (DTPDT) framework to improve the performance of airway segmentation.
A Topology-Preserved Surrogate (TPS) learning strategy is first proposed to balance the training progress within-class distribution.
A Convolutional Distance Transform (CDT) is designed to identify the breakage phenomenon with superior sensitivity and minimize the variation of the distance map between the predictionand ground-truth.
arXiv Detail & Related papers (2022-09-17T15:47:01Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - MS Lesion Segmentation: Revisiting Weighting Mechanisms for Federated
Learning [92.91544082745196]
Federated learning (FL) has been widely employed for medical image analysis.
FL's performance is limited for multiple sclerosis (MS) lesion segmentation tasks.
We propose the first FL MS lesion segmentation framework via two effective re-weighting mechanisms.
arXiv Detail & Related papers (2022-05-03T14:06:03Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Automatic airway segmentation from Computed Tomography using robust and
efficient 3-D convolutional neural networks [0.0]
We present a fully automatic and end-to-end optimised airway segmentation method for thoracic computed tomography.
We use a simple and low-memory 3D U-Net as backbone, which allows the method to process large 3D image patches.
We show that our method can extract highly complete airway trees with few false positive errors.
arXiv Detail & Related papers (2021-03-30T13:21:02Z) - Boosting Segmentation Performance across datasets using histogram
specification with application to pelvic bone segmentation [1.3750624267664155]
We propose a methodology based on modulation of image tonal distributions and deep learning to boost the performance of networks trained on limited data.
The segmentation task uses a U-Net configuration with an EfficientNet-B0 backbone, optimized using an augmented BCE-IoU loss function.
arXiv Detail & Related papers (2021-01-26T23:48:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.