論文の概要: E-GraphSAGE: A Graph Neural Network based Intrusion Detection System
- arxiv url: http://arxiv.org/abs/2103.16329v1
- Date: Tue, 30 Mar 2021 13:21:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-31 19:43:16.328026
- Title: E-GraphSAGE: A Graph Neural Network based Intrusion Detection System
- Title(参考訳): E-GraphSAGE: グラフニューラルネットワークによる侵入検知システム
- Authors: Wai Weng Lo, Siamak Layeghy, Mohanad Sarhan, Marcus Gallagher, Marius
Portmann
- Abstract要約: 本稿では,グラフニューラルネットワーク(GNN)に基づく新しいネットワーク侵入検知システム(NIDS)を提案する。
GNNはディープニューラルネットワークの比較的新しいサブフィールドであり、グラフベースのデータ固有の構造を活用するユニークな能力を持っている。
最近の6つのNIDSベンチマークデータセットに基づく実験的評価は、E-GraphSAGEベースのNIDSの優れた性能を示している。
- 参考スコア(独自算出の注目度): 3.3598755777055374
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a new network intrusion detection system (NIDS) based on
Graph Neural Networks (GNNs). GNNs are a relatively new sub-field of deep
neural networks, which have the unique ability to leverage the inherent
structure of graph-based data. Training and evaluation data for NIDSs are
typically represented as flow records, which can naturally be represented in a
graph format. This establishes the potential and motivation for exploring GNNs
for the purpose of network intrusion detection, which is the focus of this
paper. E-GraphSAGE, our proposed new approach is based on the established
GraphSAGE model, but provides the necessary modifications in order to support
edge features for edge classification, and hence the classification of network
flows into benign and attack classes. An extensive experimental evaluation
based on six recent NIDS benchmark datasets shows the excellent performance of
our E-GraphSAGE based NIDS in comparison with the state-of-the-art.
- Abstract(参考訳): 本稿では,グラフニューラルネットワーク(GNN)に基づく新しいネットワーク侵入検知システム(NIDS)を提案する。
GNNはディープニューラルネットワークの比較的新しいサブフィールドであり、グラフベースのデータ固有の構造を活用するユニークな能力を持っている。
NIDSのトレーニングと評価データは一般的にフローレコードとして表現され、グラフ形式で自然に表現できる。
これにより,ネットワーク侵入検出を目的としたGNNの探索の可能性とモチベーションが確立され,本論文の焦点となる。
e-graphsage,提案する新しいアプローチは確立されたgraphsageモデルに基づいているが,エッジ分類のエッジ機能をサポートするために必要な修正を提供し,ネットワークフローを良性クラスと攻撃クラスに分類する。
最近の6つのNIDSベンチマークデータセットに基づく広範な実験的評価は、最先端のNIDSと比較して、E-GraphSAGEベースのNIDSの優れた性能を示している。
関連論文リスト
- Revisiting Neighborhood Aggregation in Graph Neural Networks for Node Classification using Statistical Signal Processing [4.184419714263417]
グラフニューラルネットワーク(GNN)の基本構成要素である近傍集約の概念を再評価する。
本分析では,エッジ独立ノードラベルの仮定の下での動作において,特定のベンチマークGNNモデル内の概念的欠陥を明らかにする。
論文 参考訳(メタデータ) (2024-07-21T22:37:24Z) - Applying Self-supervised Learning to Network Intrusion Detection for
Network Flows with Graph Neural Network [8.318363497010969]
本稿では,教師なし型ネットワークフローの特定のためのGNNの適用について検討する。
我々の知る限り、NIDSにおけるネットワークフローのマルチクラス分類のための最初のGNNベースの自己教師方式である。
論文 参考訳(メタデータ) (2024-03-03T12:34:13Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
グラフニューラルネットワークは、グラフベースの機械学習の選択フレームワークになりつつある。
本稿では,古典的メッセージパッシングに代えて,ノード特徴の局所分布を解析するグラフニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-17T13:04:23Z) - Network Intrusion Detection with Edge-Directed Graph Multi-Head Attention Networks [13.446986347747325]
本稿では,ネットワーク侵入検出のためのエッジ指向グラフマルチヘッドアテンションネットワーク(EDGMAT)を提案する。
EDGMATモデルでは,侵入検知モデルにマルチヘッドアテンション機構を導入し,マルチヘッドアテンション機構とエッジ特徴を組み合わせた付加的な重み学習を実現する。
論文 参考訳(メタデータ) (2023-10-26T12:30:11Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Anomal-E: A Self-Supervised Network Intrusion Detection System based on
Graph Neural Networks [0.0]
本稿では,自己教師型ネットワーク侵入と異常検出のためのグラフニューラルネットワーク(GNN)の応用について検討する。
GNNは、グラフ構造を学習に組み込んだグラフベースのデータのためのディープラーニングアプローチである。
本稿では, エッジ特徴とグラフトポロジ構造を利用したGNNによる侵入・異常検出手法であるAnomal-Eを提案する。
論文 参考訳(メタデータ) (2022-07-14T10:59:39Z) - Enhance Information Propagation for Graph Neural Network by
Heterogeneous Aggregations [7.3136594018091134]
グラフニューラルネットワークは、ディープラーニングの成功の継続として出現している。
ヘテロジニアスアグリゲーションを組み合わせることで,GNN層間の情報伝達を促進することを提案する。
我々は,多くのグラフ分類ベンチマークにおいて,HAG-Netの有効性を実証的に検証した。
論文 参考訳(メタデータ) (2021-02-08T08:57:56Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2020-10-06T01:20:27Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。