論文の概要: Anomal-E: A Self-Supervised Network Intrusion Detection System based on
Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2207.06819v1
- Date: Thu, 14 Jul 2022 10:59:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-15 21:38:32.314672
- Title: Anomal-E: A Self-Supervised Network Intrusion Detection System based on
Graph Neural Networks
- Title(参考訳): Anomal-E:グラフニューラルネットワークを用いた自己監視型ネットワーク侵入検知システム
- Authors: Evan Caville, Wai Weng Lo, Siamak Layeghy, Marius Portmann
- Abstract要約: 本稿では,自己教師型ネットワーク侵入と異常検出のためのグラフニューラルネットワーク(GNN)の応用について検討する。
GNNは、グラフ構造を学習に組み込んだグラフベースのデータのためのディープラーニングアプローチである。
本稿では, エッジ特徴とグラフトポロジ構造を利用したGNNによる侵入・異常検出手法であるAnomal-Eを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates Graph Neural Networks (GNNs) application for
self-supervised network intrusion and anomaly detection. GNNs are a deep
learning approach for graph-based data that incorporate graph structures into
learning to generalise graph representations and output embeddings. As network
flows are naturally graph-based, GNNs are a suitable fit for analysing and
learning network behaviour. The majority of current implementations of
GNN-based Network Intrusion Detection Systems (NIDSs) rely heavily on labelled
network traffic which can not only restrict the amount and structure of input
traffic, but also the NIDSs potential to adapt to unseen attacks. To overcome
these restrictions, we present Anomal-E, a GNN approach to intrusion and
anomaly detection that leverages edge features and graph topological structure
in a self-supervised process. This approach is, to the best our knowledge, the
first successful and practical approach to network intrusion detection that
utilises network flows in a self-supervised, edge leveraging GNN. Experimental
results on two modern benchmark NIDS datasets not only clearly display the
improvement of using Anomal-E embeddings rather than raw features, but also the
potential Anomal-E has for detection on wild network traffic.
- Abstract(参考訳): 本稿では,自己教師型ネットワーク侵入と異常検出に対するグラフニューラルネットワーク(GNN)の適用について検討する。
GNNは、グラフ表現と出力埋め込みを一般化する学習にグラフ構造を組み込んだグラフベースのデータのためのディープラーニングアプローチである。
ネットワークフローは自然にグラフベースであるため、GNNはネットワークの振る舞いを分析し学習するのに適している。
GNNベースのネットワーク侵入検知システム(NIDS)の現在の実装の大部分は、入力トラフィックの量と構造を制限できるラベル付きネットワークトラフィックに大きく依存している。
これらの制約を克服するため, 自己監督プロセスにおけるエッジ特徴とグラフトポロジ構造を利用したGNNによる侵入・異常検出手法であるAnomal-Eを提案する。
このアプローチは、我々の知る限り、GNNを活用した自己教師付きエッジでネットワークフローを利用するネットワーク侵入検出において、最初の成功かつ実践的なアプローチである。
最新の2つのnidsデータセットにおける実験結果は、生の機能よりも異常e埋め込みの利用の改善を示すだけでなく、野生のネットワークトラフィックの検出に異常eが有する可能性も明らかに示している。
関連論文リスト
- Reducing Oversmoothing through Informed Weight Initialization in Graph Neural Networks [16.745718346575202]
本稿では,ノードやグラフの分類タスクにおいて,過度なスムース化を抑える新しいスキーム(G-Init)を提案する。
以上の結果から,新しい手法(G-Init)は深部GNNの過剰なスムース化を低減し,その有効利用を促進することが示唆された。
論文 参考訳(メタデータ) (2024-10-31T11:21:20Z) - DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
グラフニューラルネットワークは、様々なアプリケーションにまたがる強力なパフォーマンスで認識されている。
BPには、その生物学的妥当性に挑戦する制限があり、グラフベースのタスクのためのトレーニングニューラルネットワークの効率、スケーラビリティ、並列性に影響を与える。
半教師付き学習のケーススタディを用いて,GNNに適した新しい前方学習フレームワークであるDFA-GNNを提案する。
論文 参考訳(メタデータ) (2024-06-04T07:24:51Z) - Applying Self-supervised Learning to Network Intrusion Detection for
Network Flows with Graph Neural Network [8.318363497010969]
本稿では,教師なし型ネットワークフローの特定のためのGNNの適用について検討する。
我々の知る限り、NIDSにおけるネットワークフローのマルチクラス分類のための最初のGNNベースの自己教師方式である。
論文 参考訳(メタデータ) (2024-03-03T12:34:13Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Edge Graph Neural Networks for Massive MIMO Detection [15.970981766599035]
無線通信システムにおいて、MIMO(Massive Multiple-Input Multiple-Out)検出は重要な問題である。
従来のBreief Propagation(BP)検出器はループグラフでは性能が良くないが、最近のグラフニューラルネットワーク(GNN)ベースの手法はBPの欠点を克服し、優れた性能を実現することができる。
論文 参考訳(メタデータ) (2022-05-22T08:01:47Z) - Edge-Level Explanations for Graph Neural Networks by Extending
Explainability Methods for Convolutional Neural Networks [33.20913249848369]
グラフニューラルネットワーク(GNN)は、グラフデータを入力として扱うディープラーニングモデルであり、トラフィック予測や分子特性予測といった様々なタスクに適用される。
本稿では,CNNに対する説明可能性の手法として,LIME(Local Interpretable Model-Agnostic Explanations)やGradient-Based Saliency Maps,Gradient-Weighted Class Activation Mapping(Grad-CAM)をGNNに拡張する。
実験結果から,LIMEに基づくアプローチは実環境における複数のタスクに対する最も効率的な説明可能性手法であり,その状態においても優れていたことが示唆された。
論文 参考訳(メタデータ) (2021-11-01T06:27:29Z) - E-GraphSAGE: A Graph Neural Network based Intrusion Detection System [3.3598755777055374]
本稿では,グラフニューラルネットワーク(GNN)に基づく新しいネットワーク侵入検知システム(NIDS)を提案する。
GNNはディープニューラルネットワークの比較的新しいサブフィールドであり、グラフベースのデータ固有の構造を活用するユニークな能力を持っている。
最近の6つのNIDSベンチマークデータセットに基づく実験的評価は、E-GraphSAGEベースのNIDSの優れた性能を示している。
論文 参考訳(メタデータ) (2021-03-30T13:21:31Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。