論文の概要: End-to-End Constrained Optimization Learning: A Survey
- arxiv url: http://arxiv.org/abs/2103.16378v1
- Date: Tue, 30 Mar 2021 14:19:30 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-31 17:45:19.188207
- Title: End-to-End Constrained Optimization Learning: A Survey
- Title(参考訳): エンドツーエンド制約付き最適化学習:調査
- Authors: James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, Bryan Wilder
- Abstract要約: 機械学習アーキテクチャとソルバと最適化手法を統合する作業の調査に焦点を当てている。
これらのアプローチは、問題に対する迅速、近似、構造的、解決策を予測し、論理的推論を可能にする新しいハイブリッド機械学習と最適化手法を開発することを約束します。
- 参考スコア(独自算出の注目度): 69.22203885491534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper surveys the recent attempts at leveraging machine learning to
solve constrained optimization problems. It focuses on surveying the work on
integrating combinatorial solvers and optimization methods with machine
learning architectures. These approaches hold the promise to develop new hybrid
machine learning and optimization methods to predict fast, approximate,
solutions to combinatorial problems and to enable structural logical inference.
This paper presents a conceptual review of the recent advancements in this
emerging area.
- Abstract(参考訳): 本稿では,機械学習を活用した制約付き最適化問題の解法について検討する。
組合せソルバと最適化メソッドを機械学習アーキテクチャに統合する作業の調査に重点を置いている。
これらのアプローチは、組合せ問題の高速で近似的な解を予測し、構造的論理推論を可能にするために、新しいハイブリッド機械学習と最適化手法を開発することを約束している。
本稿では,この新興領域における最近の進歩に関する概念的考察を紹介する。
関連論文リスト
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Thenフレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
本稿では,共同予測モデルを用いて観測可能特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-07T19:52:14Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - Rapid quantum approaches for combinatorial optimisation inspired by
optimal state-transfer [3.591122855617648]
そこで本稿では,ハミルトニアンにインスパイアされた最適状態伝達問題に対処する新しい設計を提案する。
我々はこの新デザインの成功の数値的な証拠を提供する。
論文 参考訳(メタデータ) (2023-01-17T12:45:09Z) - Neural Combinatorial Optimization: a New Player in the Field [69.23334811890919]
本稿では,ニューラルネットワークに基づくアルゴリズムの古典的最適化フレームワークへの導入に関する批判的分析を行う。
性能, 転送可能性, 計算コスト, 大規模インスタンスなど, これらのアルゴリズムの基本的側面を分析するために, 総合的研究を行った。
論文 参考訳(メタデータ) (2022-05-03T07:54:56Z) - Teaching Networks to Solve Optimization Problems [13.803078209630444]
反復解法をトレーニング可能なパラメトリック集合関数に置き換えることを提案する。
このようなパラメトリックな(集合)関数を学習することで、様々な古典的最適化問題を解くことができることを示す。
論文 参考訳(メタデータ) (2022-02-08T19:13:13Z) - An Overview and Experimental Study of Learning-based Optimization
Algorithms for Vehicle Routing Problem [49.04543375851723]
車両ルーティング問題(VRP)は典型的な離散最適化問題である。
多くの研究は、VRPを解決するための学習に基づく最適化アルゴリズムについて検討している。
本稿では、最近のこの分野の進歩を概観し、関連するアプローチをエンドツーエンドアプローチとステップバイステップアプローチに分割する。
論文 参考訳(メタデータ) (2021-07-15T02:13:03Z) - Learning Primal Heuristics for Mixed Integer Programs [5.766851255770718]
本研究は,機械学習を用いて効果的な霊長類を自動学習できるかどうかを考察する。
本稿では,最適化問題をグラフとして表現するための新しい手法を提案する。
可変解の予測はB&B法の新たな構成であるProbabilistic Branching with guided Depth-first Searchによって行われる。
論文 参考訳(メタデータ) (2021-07-02T06:46:23Z) - SeaPearl: A Constraint Programming Solver guided by Reinforcement
Learning [0.0]
本稿では,Juliaで実装された新しい制約プログラミング問題であるSeaPearlの概念実証について述べる。
seapearlは強化学習を使用して分岐決定を学ぶために機械学習ルーチンをサポートする。
産業用ソリューションとはまだ競合していないが、seapearlは柔軟でオープンソースなフレームワークを提供することを目指している。
論文 参考訳(メタデータ) (2021-02-18T07:34:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。