論文の概要: CovidTracker: A comprehensive Covid-related social media dataset for NLP
tasks
- arxiv url: http://arxiv.org/abs/2103.16446v2
- Date: Fri, 17 Jun 2022 11:40:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-06 03:42:21.987085
- Title: CovidTracker: A comprehensive Covid-related social media dataset for NLP
tasks
- Title(参考訳): CovidTracker: NLPタスクのための総合的なCovid関連ソーシャルメディアデータセット
- Authors: Richard Plant, Amir Hussain
- Abstract要約: このリリースは、スコットランド政府の主任科学者局が資金提供した研究結果を支持している。
新型コロナウイルスの感染拡大に伴う公衆衛生対策の対応を理解するため、社会的な感情を調査することを目指す。
- 参考スコア(独自算出の注目度): 8.230368367333043
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The Covid-19 pandemic presented an unprecedented global public health
emergency, and concomitantly an unparalleled opportunity to investigate public
responses to adverse social conditions. The widespread ability to post messages
to social media platforms provided an invaluable outlet for such an outpouring
of public sentiment, including not only expressions of social solidarity, but
also the spread of misinformation and misconceptions around the effect and
potential risks of the pandemic. This archive of message content therefore
represents a key resource in understanding public responses to health crises,
analysis of which could help to inform public policy interventions to better
respond to similar events in future. We present a benchmark database of public
social media postings from the United Kingdom related to the Covid-19 pandemic
for academic research purposes, along with some initial analysis, including a
taxonomy of key themes organised by keyword. This release supports the findings
of a research study funded by the Scottish Government Chief Scientists' Office
that aims to investigate social sentiment in order to understand the response
to public health measures implemented during the pandemic.
- Abstract(参考訳): 新型コロナウイルス(COVID-19)のパンデミックは、前例のない世界的な公衆衛生上の緊急事態を招き、不適切な社会的状況に対する公衆の反応を調査する絶好の機会となった。
ソーシャルメディアプラットフォームにメッセージを投稿する能力は、社会的連帯の表現だけでなく、パンデミックの影響や潜在的なリスクに関する誤った情報や誤解の拡散を含む、そのような世論の拡散にとって貴重な出口となった。
したがって、このメッセージコンテンツのアーカイブは、健康危機に対する公衆の反応を理解する上で重要なリソースであり、その分析は、公共政策の介入を通知し、将来同様の出来事に対処するのに役立つ。
本稿では,Covid-19パンデミックに関連する英国からの公開ソーシャルメディア投稿のベンチマークデータベースと,キーワードによって整理されたキーテーマの分類を含む,いくつかの初期分析について紹介する。
このリリースは、パンデミック時に実施された公衆衛生対策に対する反応を理解するために、社会的感情を調査することを目的としたスコットランド政府のチーフサイエンティストズオフィスが資金提供した研究研究の結果を支持するものである。
関連論文リスト
- Event Detection from Social Media for Epidemic Prediction [76.90779562626541]
ソーシャルメディア投稿から疫病関連事象を抽出・分析する枠組みを構築した。
実験では、新型コロナウイルスベースのSPEEDで訓練されたEDモデルが、3つの目に見えない流行の流行を効果的に検出する方法が明らかにされている。
モンキーポックスのWHO流行宣言より4~9週間早く,抽出した事象の報告が急激な増加を示すことを示す。
論文 参考訳(メタデータ) (2024-04-02T06:31:17Z) - Visualizing Relation Between (De)Motivating Topics and Public Stance
toward COVID-19 Vaccine [0.0]
本研究では,新型コロナウイルス感染拡大に伴うTwitter圏内の話題を検査・分析するインタラクティブな可視化ツールを提案する。
このツールは、視覚分析のあらゆるシナリオに対して容易に一般化することができ、研究者や一般大衆のソーシャルメディアデータの透明性を高めることができる。
論文 参考訳(メタデータ) (2023-06-21T09:01:53Z) - Executive Voiced Laughter and Social Approval: An Explorative Machine
Learning Study [56.03830131919201]
経営コミュニケーションにおける音声笑いとその社会的承認への影響について検討した。
本研究は,経営コミュニケーション,戦略的リーダーシップ,社会的評価のネクサスにおける研究に寄与する。
論文 参考訳(メタデータ) (2023-05-16T14:39:00Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
本稿では、ソーシャルメディアの文章に基づいて、個人のうつ病の重症度を研究するための効率的なセマンティックパイプラインを提案する。
我々は,抑うつ症状と重度レベルに対応する代表訓練文の指標に対して意味的ランキングを生成するために,テストユーザ文を使用する。
本手法を2つのRedditベースのベンチマークで評価し,うつ病の重症度を指標として,最先端技術よりも30%改善した。
論文 参考訳(メタデータ) (2022-11-14T18:47:26Z) - When Infodemic Meets Epidemic: a Systematic Literature Review [3.3454373538792543]
ソーシャルメディアは、バイオサーベイランスに活用できる大量のデータを提供している。
この体系的な文献レビューは、さまざまな流行関連文脈におけるソーシャルメディアの統合の方法論的概要を提供する。
論文 参考訳(メタデータ) (2022-10-03T21:04:30Z) - Aggression and "hate speech" in communication of media users: analysis
of control capabilities [50.591267188664666]
著者らは新メディアにおける利用者の相互影響の可能性を検討した。
新型コロナウイルス(COVID-19)対策として、緊急の社会問題について議論する際、攻撃やヘイトスピーチのレベルが高いことが分かった。
結果は、現代のデジタル環境におけるメディアコンテンツの開発に有用である。
論文 参考訳(メタデータ) (2022-08-25T15:53:32Z) - COVID-19 and Big Data: Multi-faceted Analysis for Spatio-temporal
Understanding of the Pandemic with Social Media Conversations [4.07452542897703]
ソーシャルメディアプラットフォームは、新型コロナウイルス(COVID-19)に関する世界的な会話の手段として機能している。
本稿では,パンデミックを取り巻くソーシャルメディア会話の重要コンテンツと特徴の分析,マイニング,追跡のための枠組みを提案する。
論文 参考訳(メタデータ) (2021-04-22T00:45:50Z) - Tracking the evolution of crisis processes and mental health on social
media during the COVID-19 pandemic [0.90238471756546]
本研究は,危機対応と回復の段階を社会学的問題として検討することを目的とする。
アルゼンチンで2020年3月から8月にかけて行われた大量のTwitterデータに基づいて、ソーシャルメディア投稿で使用される言語の違いをテーマ分析した。
論文 参考訳(メタデータ) (2020-11-22T14:30:09Z) - Pandemic Pulse: Unraveling and Modeling Social Signals during the
COVID-19 Pandemic [12.050597862123313]
新型コロナウイルス(COVID-19)のパンデミックが米国に与える影響の一部を表わす、社会データの収集を提示し、調査を始めます。
このデータは、様々な情報源から収集され、ニューストピック、ソーシャルディスタンシング行動、コミュニティモビリティの変化、Web検索などの経年的傾向を含む。
論文 参考訳(メタデータ) (2020-06-10T17:55:44Z) - COVI White Paper [67.04578448931741]
接触追跡は、新型コロナウイルスのパンデミックの進行を変える上で不可欠なツールだ。
カナダで開発されたCovid-19の公衆ピアツーピア接触追跡とリスク認識モバイルアプリケーションであるCOVIの理論的、設計、倫理的考察、プライバシ戦略について概説する。
論文 参考訳(メタデータ) (2020-05-18T07:40:49Z) - The Ivory Tower Lost: How College Students Respond Differently than the
General Public to the COVID-19 Pandemic [66.80677233314002]
新型コロナウイルス感染症(COVID-19)のパンデミックは、政府に究極の課題を提示した。
米国では、新型コロナウイルス感染者が最も多い国で、全国的なソーシャルディスタンシングプロトコルが大統領によって実施されている。
本稿では,この対話型社会における前例のない破壊の社会的意義を,ソーシャルメディア上での人々の意見のマイニングによって発見することを目的とする。
論文 参考訳(メタデータ) (2020-04-21T13:02:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。