Room-temperature optically detected magnetic resonance of single defects
in hexagonal boron nitride
- URL: http://arxiv.org/abs/2103.16494v1
- Date: Tue, 30 Mar 2021 16:50:59 GMT
- Title: Room-temperature optically detected magnetic resonance of single defects
in hexagonal boron nitride
- Authors: Hannah L. Stern, John Jarman, Qiushi Gu, Simone Eizagirre Barker, Noah
Mendelson, Dipankar Chugh, Sam Schott, Hoe H. Tan, Henning Sirringhaus, Igor
Aharonovich and Mete Atat\"ure
- Abstract summary: We report optically detected magnetic resonance (ODMR) from carbon-related defects in 2d hexagonal boron nitride (hBN)
Our results offer a promising route towards realising a room-temperature spin-photon quantum interface in hBN.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optically addressable spins in materials are important platforms for quantum
technologies, such as repeaters and sensors. Identification of such systems in
two-dimensional (2d) layered materials offers advantages over their bulk
counterparts, as their reduced dimensionality enables more feasible on-chip
integration into devices. Here, we report optically detected magnetic resonance
(ODMR) from previously identified carbon-related defects in 2d hexagonal boron
nitride (hBN). We show that single-defect ODMR contrast can be as strong as 6%
and displays a magnetic-field dependence with both positive or negative sign
per defect. This bipolarity can shed light into low contrast reported recently
for ensemble ODMR measurements for these defects. Further, the ODMR lineshape
comprises a doublet resonance, suggesting either low zero-field splitting or
hyperfine coupling. Our results offer a promising route towards realising a
room-temperature spin-photon quantum interface in hexagonal boron nitride.
Related papers
- Magnetic field dependence of $V_B^-$ Defects in hexagonal boron nitride [5.426508182505848]
We study the influence of off-axis magnetic fields on the coherence properties of $V_B-$ defects in hBN.
Results are crucial for optimizing $V_B-$ defects in hBN, establishing their significance as robust quantum sensors.
arXiv Detail & Related papers (2024-10-09T10:40:05Z) - Quantum Emission from Coupled Spin Pairs in Hexagonal Boron Nitride [4.1020458874018795]
Optically addressable defect qubits in wide band gap materials are favorable candidates for room temperature quantum information processing.
The two-dimensional hexagonal boron nitride (hBN) is an attractive solid state platform with a great potential for hosting bright quantum emitters with quantum memories.
arXiv Detail & Related papers (2024-08-24T08:40:38Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe [55.41644538483948]
We show a new type of single photon emitter with potential electron spin qubit based on Cl impurities inSe.
Results suggest single Cl impurities are suitable as single photon source with potential photonic interface.
arXiv Detail & Related papers (2022-03-11T04:29:21Z) - Review on coherent quantum emitters in hexagonal boron nitride [91.3755431537592]
I discuss the state-of-the-art of defect centers in hexagonal boron nitride with a focus on optically coherent defect centers.
The spectral transition linewidth remains unusually narrow even at room temperature.
The field is put into a broad perspective with impact on quantum technology such as quantum optics, quantum photonics as well as spin optomechanics.
arXiv Detail & Related papers (2022-01-31T12:49:43Z) - Excited-state spectroscopy of spin defects in hexagonal boron nitride [20.739656944743345]
We probed electron-spin resonance transitions in the excited state of negatively-charged boron vacancy defects in hexagonal boron nitride (hBN) at room temperature.
The data showed that the excited state has a zero-field splitting of 2.1 GHz, a g factor similar to the ground state and two types of hyperfine splitting 90 MHz and 18.8 MHz respectively.
Negative peaks in photoluminescence and ODMR contrast as a function of magnetic field magnitude and angle at level anti-crossing were observed and explained by coherent spin precession and anisotropic relaxation.
arXiv Detail & Related papers (2021-12-06T10:28:57Z) - Cavity Quantum Electrodynamics Design with Single Photon Emitters in
Hexagonal Boron Nitride [6.352389759470726]
We numerically investigate the cavity quantum electrodynamics (cavity-QED) scheme incorporating defect-enabled single photon emitters in h-BN microdisk resonators.
The whispering-gallery nature of microdisks can support multiple families of cavity resonances with different radial and azimuthal mode indices simultaneously.
This study contributes toward realizing h-BN photonic components, such as low-threshold microcavity lasers and high-purity single photon sources.
arXiv Detail & Related papers (2021-06-05T21:53:44Z) - Coupling spin defects in hexagonal boron nitride to monolithic bullseye
cavities [0.9865297101789609]
We demonstrate the efficient coupling of recently discovered spin defects in hBN to purposely designed bullseye cavities.
We show that the all monolithic hBN cavity system exhibits an order of magnitude enhancement in the emission of the coupled boron vacancy spin defects.
arXiv Detail & Related papers (2021-05-26T03:56:02Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Mechanical Decoupling of Quantum Emitters in Hexagonal Boron Nitride
from Low-Energy Phonon Modes [52.77024349608834]
Quantum emitters in hexagonal Boron Nitride (hBN) were recently reported to hol a homogeneous linewidth according to the Fourier-Transform limit up to room temperature.
This unusual observation was traced back to decoupling from in-plane phonon modes which can arise if the emitter is located between two planes of the hBN host material.
arXiv Detail & Related papers (2020-04-22T20:00:49Z) - Effect of phonons on the electron spin resonance absorption spectrum [62.997667081978825]
We model the effect of phonons and temperature on the electron spin resonance (ESR) signal in magnetically active systems.
We find that the suppression of ESR signals is due to phonon broadening but not based on the common assumption of orbital quenching.
arXiv Detail & Related papers (2020-04-22T01:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.