Quantum Optimization for Training Quantum Neural Networks
- URL: http://arxiv.org/abs/2103.17047v1
- Date: Wed, 31 Mar 2021 13:06:30 GMT
- Title: Quantum Optimization for Training Quantum Neural Networks
- Authors: Yidong Liao, Min-Hsiu Hsieh, Chris Ferrie
- Abstract summary: We devise a framework for leveraging quantum optimisation algorithms to find optimal parameters of QNNs for certain tasks.
We coherently encode the cost function of QNNs onto relative phases of a superposition state in the Hilbert space of the network parameters.
- Score: 16.780058676633914
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Training quantum neural networks (QNNs) using gradient-based or gradient-free
classical optimisation approaches is severely impacted by the presence of
barren plateaus in the cost landscapes. In this paper, we devise a framework
for leveraging quantum optimisation algorithms to find optimal parameters of
QNNs for certain tasks. To achieve this, we coherently encode the cost function
of QNNs onto relative phases of a superposition state in the Hilbert space of
the network parameters. The parameters are tuned with an iterative quantum
optimisation structure using adaptively selected Hamiltonians. The quantum
mechanism of this framework exploits hidden structure in the QNN optimisation
problem and hence is expected to provide beyond-Grover speed up, mitigating the
barren plateau issue.
Related papers
- A General Framework for Gradient-Based Optimization of Superconducting Quantum Circuits using Qubit Discovery as a Case Study [0.19528996680336308]
We present a comprehensive framework for the gradient-based optimization of superconducting quantum circuits.
We apply this framework to the qubit discovery problem, demonstrating its effectiveness in identifying qubit designs with superior performance metrics.
arXiv Detail & Related papers (2024-08-22T19:46:50Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Scaling Limits of Quantum Repeater Networks [62.75241407271626]
Quantum networks (QNs) are a promising platform for secure communications, enhanced sensing, and efficient distributed quantum computing.
Due to the fragile nature of quantum states, these networks face significant challenges in terms of scalability.
In this paper, the scaling limits of quantum repeater networks (QRNs) are analyzed.
arXiv Detail & Related papers (2023-05-15T14:57:01Z) - Optimizing Variational Quantum Algorithms with qBang: Efficiently Interweaving Metric and Momentum to Navigate Flat Energy Landscapes [0.0]
Variational quantum algorithms (VQAs) represent a promising approach to utilizing current quantum computing infrastructures.
We propose the quantum Broyden adaptive natural gradient (qBang) approach, a novel that aims to distill the best aspects of existing approaches.
arXiv Detail & Related papers (2023-04-27T00:06:48Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Symmetric Pruning in Quantum Neural Networks [111.438286016951]
Quantum neural networks (QNNs) exert the power of modern quantum machines.
QNNs with handcraft symmetric ansatzes generally experience better trainability than those with asymmetric ansatzes.
We propose the effective quantum neural tangent kernel (EQNTK) to quantify the convergence of QNNs towards the global optima.
arXiv Detail & Related papers (2022-08-30T08:17:55Z) - Quantum Neural Architecture Search with Quantum Circuits Metric and
Bayesian Optimization [2.20200533591633]
We propose a new quantum gates distance that characterizes the gates' action over every quantum state.
Our approach significantly outperforms the benchmark on three empirical quantum machine learning problems.
arXiv Detail & Related papers (2022-06-28T16:23:24Z) - Surviving The Barren Plateau in Variational Quantum Circuits with
Bayesian Learning Initialization [0.0]
Variational quantum-classical hybrid algorithms are seen as a promising strategy for solving practical problems on quantum computers in the near term.
Here, we introduce the fast-and-slow algorithm, which uses gradients to identify a promising region in Bayesian space.
Our results move variational quantum algorithms closer to their envisioned applications in quantum chemistry, optimization, and quantum simulation problems.
arXiv Detail & Related papers (2022-03-04T17:48:57Z) - Quantum Approximate Optimization Algorithm applied to the binary
perceptron [0.46664938579243564]
We apply digitized Quantum Annealing (QA) and Quantum Approximate Optimization Algorithm (QAOA) to a paradigmatic task of supervised learning in artificial neural networks.
We provide evidence for the existence of optimal smooth solutions for the QAOA parameters, which are transferable among typical instances of the same problem.
We prove numerically an enhanced performance of QAOA over traditional QA.
arXiv Detail & Related papers (2021-12-19T18:33:22Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) have been proposed as generalizations of classical neural networks to achieve the quantum speed-up.
Serious bottlenecks exist for training QNNs due to the vanishing with gradient rate exponential to the input qubit number.
We show that QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.
arXiv Detail & Related papers (2020-11-12T08:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.