論文の概要: A comparative evaluation of learned feature descriptors on hybrid
monocular visual SLAM methods
- arxiv url: http://arxiv.org/abs/2104.00085v1
- Date: Wed, 31 Mar 2021 19:56:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-03 09:15:46.083135
- Title: A comparative evaluation of learned feature descriptors on hybrid
monocular visual SLAM methods
- Title(参考訳): ハイブリッド単眼視覚SLAM法における学習特徴記述子の比較評価
- Authors: Hudson M. S. Bruno and Esther L. Colombini
- Abstract要約: 異なる学習特徴記述子を用いたハイブリッド型vslam法の性能比較を行った。
KITTIおよびEuroc MAVデータセット上で実施された実験では、学習された機能記述子はより堅牢なVSLAMシステムを作成することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classical Visual Simultaneous Localization and Mapping (VSLAM) algorithms can
be easily induced to fail when either the robot's motion or the environment is
too challenging. The use of Deep Neural Networks to enhance VSLAM algorithms
has recently achieved promising results, which we call hybrid methods. In this
paper, we compare the performance of hybrid monocular VSLAM methods with
different learned feature descriptors. To this end, we propose a set of
experiments to evaluate the robustness of the algorithms under different
environments, camera motion, and camera sensor noise. Experiments conducted on
KITTI and Euroc MAV datasets confirm that learned feature descriptors can
create more robust VSLAM systems.
- Abstract(参考訳): 古典的な視覚同時ローカライゼーション・マッピング(vslam)アルゴリズムは、ロボットの動きや環境が難しい場合、簡単に失敗に導くことができる。
VSLAMアルゴリズムの強化にDeep Neural Networksを用いることで、我々は最近、ハイブリッド手法と呼ばれる有望な結果を得た。
本稿では,ハイブリッド型単眼vslam法の性能と学習特徴記述子の性能を比較した。
そこで本研究では,異なる環境下でのアルゴリズムの堅牢性,カメラモーション,カメラセンサノイズを評価するための一連の実験を提案する。
KITTIとEuroc MAVデータセットで実施された実験は、学習された特徴記述子がより堅牢なVSLAMシステムを作成することができることを確認した。
関連論文リスト
- KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
KFD-NeRFは,Kalmanフィルタに基づく効率的かつ高品質な運動再構成フレームワークと統合された,新しい動的ニューラル放射場である。
我々のキーとなる考え方は、動的放射場を、観測と予測という2つの知識源に基づいて時間的に異なる状態が推定される動的システムとしてモデル化することである。
我々のKFD-NeRFは、同等の計算時間と最先端の視線合成性能で、徹底的な訓練を施した類似または優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-18T05:48:24Z) - MixLight: Borrowing the Best of both Spherical Harmonics and Gaussian Models [69.39388799906409]
既存の作業では、照明マップを生成したり、照明パラメータを回帰することによって照明を推定する。
本稿では,SHとSGの相補的特性を利用して,より完全な照明表現を実現するジョイントモデルであるMixLightを提案する。
論文 参考訳(メタデータ) (2024-04-19T10:17:10Z) - DK-SLAM: Monocular Visual SLAM with Deep Keypoint Learning, Tracking and Loop-Closing [13.50980509878613]
公開されているデータセットに対する実験的評価は、DK-SLAMが従来のSLAMシステムと学習ベースのSLAMシステムより優れていることを示している。
本システムでは,キーポイント抽出ネットワークの学習を最適化するために,モデル非依存メタラーニング(MAML)戦略を採用している。
累積的な位置決め誤差を軽減するため、DK-SLAMはループ閉鎖検出にバイナリ機能を利用する新しいオンライン学習モジュールを組み込んだ。
論文 参考訳(メタデータ) (2024-01-17T12:08:30Z) - DNS SLAM: Dense Neural Semantic-Informed SLAM [92.39687553022605]
DNS SLAMは、ハイブリッド表現を備えた新しいRGB-DセマンティックSLAMアプローチである。
本手法は画像に基づく特徴抽出と多視点幾何制約を統合し,外観の細部を改良する。
実験により, 合成データと実世界のデータ追跡の両面において, 最先端の性能が得られた。
論文 参考訳(メタデータ) (2023-11-30T21:34:44Z) - Diffusion-based Visual Counterfactual Explanations -- Towards Systematic
Quantitative Evaluation [64.0476282000118]
視覚的対物的説明法(VCE)の最新手法は、深い生成モデルの力を利用して、印象的な画質の高次元画像の新しい例を合成する。
評価手順が大きく異なり,個々の実例の視覚検査や小規模なユーザスタディなど,これらのVCE手法の性能を比較することは,現時点では困難である。
本稿では,VCE手法の体系的,定量的評価のためのフレームワークと,使用する指標の最小セットを提案する。
論文 参考訳(メタデータ) (2023-08-11T12:22:37Z) - DH-PTAM: A Deep Hybrid Stereo Events-Frames Parallel Tracking And Mapping System [1.443696537295348]
本稿では,視覚的並列追跡・マッピング(PTAM)システムに対するロバストなアプローチを提案する。
提案手法は,異種多モード視覚センサの強度を統一参照フレームに組み合わせたものである。
私たちの実装のリサーチベースのPython APIはGitHubで公開されています。
論文 参考訳(メタデータ) (2023-06-02T19:52:13Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
低光画像強調(LLIE)技術は、画像の詳細の保存とコントラストの強化に顕著な進歩をもたらした。
これらのアプローチは、動的ノイズを効率的に緩和し、様々な低照度シナリオを収容する上で、永続的な課題に直面する。
まず,低照度画像の雑音レベルを迅速かつ高精度に推定する方法を提案する。
次に、照明と入力の一般的な制約を満たすために、Learningable Illumination Interpolator (LII) を考案する。
論文 参考訳(メタデータ) (2023-05-17T13:56:48Z) - LIFT-SLAM: a deep-learning feature-based monocular visual SLAM method [0.0]
従来のジオメトリベースのVSLAMと深層学習に基づく特徴記述子の可能性を組み合わせることを提案する。
KITTIとEurocのデータセットを用いた実験では、ディープラーニングが従来のVSLAMシステムの性能向上に有効であることが示されている。
論文 参考訳(メタデータ) (2021-03-31T20:35:10Z) - A Hybrid Learner for Simultaneous Localization and Mapping [2.1041384320978267]
同時ローカライゼーション・マッピング(slam)は、移動プラットフォームの動的運動経路を予測するために用いられる。
本研究は,機能融合を超えたハイブリッド学習モデルを提案する。
それは異なった深いネットワークの上の層の突然変異によってSLAMのフロントエンドの特徴の抽出器の重量の増強を遂行します。
独立に訓練されたモデルからの軌道予測は、位置の詳細を洗練するために集約される。
論文 参考訳(メタデータ) (2021-01-04T18:41:09Z) - Plug-And-Play Learned Gaussian-mixture Approximate Message Passing [71.74028918819046]
そこで本研究では,従来のi.i.d.ソースに適した圧縮圧縮センシング(CS)リカバリアルゴリズムを提案する。
我々のアルゴリズムは、Borgerdingの学習AMP(LAMP)に基づいて構築されるが、アルゴリズムに普遍的な復調関数を採用することにより、それを大幅に改善する。
数値評価により,L-GM-AMPアルゴリズムは事前の知識を必要とせず,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-11-18T16:40:45Z) - Evolving Deep Convolutional Neural Networks for Hyperspectral Image
Denoising [6.869192200282213]
本稿では,HSIを効果的に識別する最適な畳み込みニューラルネットワーク(CNN)を自動構築する新しいアルゴリズムを提案する。
提案アルゴリズムの実験は、最先端の競合相手とよく設計され比較されている。
論文 参考訳(メタデータ) (2020-08-15T03:04:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。