論文の概要: High-Dimensional Differentially-Private EM Algorithm: Methods and
Near-Optimal Statistical Guarantees
- arxiv url: http://arxiv.org/abs/2104.00245v1
- Date: Thu, 1 Apr 2021 04:08:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-02 13:46:24.539480
- Title: High-Dimensional Differentially-Private EM Algorithm: Methods and
Near-Optimal Statistical Guarantees
- Title(参考訳): 高次元微分プライベートemアルゴリズム:手法と近最適統計量保証
- Authors: Zhe Zhang and Linjun Zhang
- Abstract要約: 高次元潜在変数モデルにおける差分プライベート期待最大化(EM)アルゴリズムを設計するための一般的なフレームワークを開発している。
各モデルにおいて、差分プライバシー制約による収束のほぼ最適度を確立する。
この設定では、差分プライバシーを保証する近レート最適EMアルゴリズムを提案します。
- 参考スコア(独自算出の注目度): 8.089708900273804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we develop a general framework to design differentially
private expectation-maximization (EM) algorithms in high-dimensional latent
variable models, based on the noisy iterative hard-thresholding. We derive the
statistical guarantees of the proposed framework and apply it to three specific
models: Gaussian mixture, mixture of regression, and regression with missing
covariates. In each model, we establish the near-optimal rate of convergence
with differential privacy constraints, and show the proposed algorithm is
minimax rate optimal up to logarithm factors. The technical tools developed for
the high-dimensional setting are then extended to the classic low-dimensional
latent variable models, and we propose a near rate-optimal EM algorithm with
differential privacy guarantees in this setting. Simulation studies and real
data analysis are conducted to support our results.
- Abstract(参考訳): 本稿では,高次元潜在変数モデルにおける微分プライベート期待最大化(em)アルゴリズムを設計するための汎用フレームワークを開発した。
提案した枠組みの統計的保証を導出し、ガウス混合、回帰の混合、および欠落した共変量との回帰の3つの特定のモデルに適用する。
各モデルにおいて,微分プライバシー制約付き収束の最適速度を定式化し,提案アルゴリズムが対数係数まで最適であることを示す。
高次元設定のために開発された技術ツールを古典的な低次元潜在変数モデルに拡張し、この設定で差分プライバシーを保証する近似EMアルゴリズムを提案する。
シミュレーション研究と実データ解析は,本研究の成果を裏付けるものである。
関連論文リスト
- Differentially Private Optimization with Sparse Gradients [60.853074897282625]
微分プライベート(DP)最適化問題を個人勾配の空間性の下で検討する。
これに基づいて、スパース勾配の凸最適化にほぼ最適な速度で純粋および近似DPアルゴリズムを得る。
論文 参考訳(メタデータ) (2024-04-16T20:01:10Z) - Quantized Hierarchical Federated Learning: A Robust Approach to
Statistical Heterogeneity [3.8798345704175534]
本稿では,コミュニケーション効率に量子化を組み込んだ新しい階層型フェデレーション学習アルゴリズムを提案する。
最適性ギャップと収束率を評価するための包括的な分析フレームワークを提供する。
この結果から,本アルゴリズムはパラメータの範囲で常に高い学習精度を達成できることが判明した。
論文 参考訳(メタデータ) (2024-03-03T15:40:24Z) - kNN Algorithm for Conditional Mean and Variance Estimation with
Automated Uncertainty Quantification and Variable Selection [8.429136647141487]
我々は従来の非パラメトリックkNNモデルのスケーラビリティと適応性を相乗化するkNNベースの回帰手法を提案する。
本手法は,確率応答変数の条件平均と分散を正確に推定することに焦点を当てる。
2つのケーススタディで示されているように、特に生体医学的応用において顕著である。
論文 参考訳(メタデータ) (2024-02-02T18:54:18Z) - On the Computational Complexity of Private High-dimensional Model Selection [18.964255744068122]
プライバシー制約下での高次元疎線形回帰モデルにおけるモデル選択の問題点を考察する。
本稿では, 効率的なメトロポリス・ハスティングスアルゴリズムを提案し, 一定の規則性条件下では, 定常分布への混合時間を享受できることを確かめる。
論文 参考訳(メタデータ) (2023-10-11T19:53:15Z) - Differentiating Metropolis-Hastings to Optimize Intractable Densities [51.16801956665228]
我々はメトロポリス・ハスティングス検層の自動識別アルゴリズムを開発した。
難解な対象密度に対する期待値として表現された目的に対して勾配に基づく最適化を適用する。
論文 参考訳(メタデータ) (2023-06-13T17:56:02Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Smpling (AIS) は、深層生成モデルの難易度を推定するために使われる一般的なアルゴリズムである。
本稿では、フレキシブルな中間分布を持つパラメータAISプロセスを提案し、サンプリングに少ないステップを使用するようにブリッジング分布を最適化する。
我々は, 最適化AISの性能評価を行い, 深部生成モデルの限界推定を行い, 他の推定値と比較した。
論文 参考訳(メタデータ) (2022-09-27T07:58:25Z) - Jointly Modeling and Clustering Tensors in High Dimensions [6.072664839782975]
テンソルの合同ベンチマークとクラスタリングの問題を考察する。
本稿では,統計的精度の高い近傍に幾何的に収束する効率的な高速最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-04-15T21:06:16Z) - Autoregressive Score Matching [113.4502004812927]
自動回帰条件スコアモデル(AR-CSM)を提案する。
AR-CSMモデルでは、このデータ分布とモデル分布のばらつきを効率的に計算し、最適化することができ、高価なサンプリングや対向訓練を必要としない。
本研究では,合成データに対する密度推定,画像生成,画像復調,暗黙エンコーダを用いた潜在変数モデルの訓練に応用できることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:01:24Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
我々は,人口レベルでのアルゴリズムの決定論的収束率と,$n$サンプルに基づく経験的対象に適用した場合の(不安定性)の間の相互作用に基づいて,統計的精度を得るフレームワークを開発する。
本稿では,ガウス混合推定,非線形回帰モデル,情報的非応答モデルなど,いくつかの具体的なモデルに対する一般結果の応用について述べる。
論文 参考訳(メタデータ) (2020-05-22T22:30:52Z) - Uncertainty Modelling in Risk-averse Supply Chain Systems Using
Multi-objective Pareto Optimization [0.0]
サプライチェーンモデリングにおける困難なタスクの1つは、不規則な変動に対して堅牢なモデルを構築することである。
我々は、不確実性を扱うためのパレート最適化(Pareto Optimization)という新しい手法を導入し、これらの不確実性のエントロピーをアプリオリ仮定の下で明示的にモデル化することで拘束する。
論文 参考訳(メタデータ) (2020-04-24T21:04:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。