Designing for human-AI complementarity in K-12 education
- URL: http://arxiv.org/abs/2104.01266v1
- Date: Fri, 2 Apr 2021 22:38:50 GMT
- Title: Designing for human-AI complementarity in K-12 education
- Authors: Kenneth Holstein and Vincent Aleven
- Abstract summary: We present the iterative design and evaluation of Lumilo, smart glasses that help teachers help their students in AI-supported classrooms.
Results from a field study conducted in K-12 classrooms indicate that students learn more when teachers and AI tutors work together.
- Score: 2.741266294612776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work has explored how complementary strengths of humans and artificial
intelligence (AI) systems might be productively combined. However, successful
forms of human-AI partnership have rarely been demonstrated in real-world
settings. We present the iterative design and evaluation of Lumilo, smart
glasses that help teachers help their students in AI-supported classrooms by
presenting real-time analytics about students' learning, metacognition, and
behavior. Results from a field study conducted in K-12 classrooms indicate that
students learn more when teachers and AI tutors work together during class. We
discuss implications for the design of human-AI partnerships, arguing for
participatory approaches to research in this area, and for principled
approaches to studying human-AI decision-making in real-world contexts.
Related papers
- Qualitative and quantitative analysis of student's perceptions in the use of generative AI in educational environments [0.0]
The effective integration of generative artificial intelligence in education is a fundamental aspect to prepare future generations.
The objective of this study is to analyze from a quantitative and qualitative point of view the perception of controlled student-IA interaction within the classroom.
arXiv Detail & Related papers (2024-05-22T09:56:05Z) - Exploring Teachers' Perception of Artificial Intelligence: The Socio-emotional Deficiency as Opportunities and Challenges in Human-AI Complementarity in K-12 Education [1.9797215742507548]
In schools, teachers play a multitude of roles, serving as educators, counselors, decision-makers, and members of the school community.
With recent advances in artificial intelligence (AI), there is increasing discussion about how AI can assist, complement, and collaborate with teachers.
Our study seeks educators' perspectives on the potential strengths and limitations of AI across a spectrum of responsibilities.
arXiv Detail & Related papers (2024-05-20T15:43:04Z) - Bringing Generative AI to Adaptive Learning in Education [58.690250000579496]
We shed light on the intersectional studies of generative AI and adaptive learning.
We argue that this union will contribute significantly to the development of the next-stage learning format in education.
arXiv Detail & Related papers (2024-02-02T23:54:51Z) - Charting the Future of AI in Project-Based Learning: A Co-Design
Exploration with Students [35.05435052195561]
The increasing use of Artificial Intelligence (AI) by students in learning presents new challenges for assessing their learning outcomes.
This paper introduces a co-design study to explore the potential of students' AI usage data as a novel material for assessment.
arXiv Detail & Related papers (2024-01-26T14:49:29Z) - Collaborative Learning with Artificial Intelligence Speakers (CLAIS):
Pre-Service Elementary Science Teachers' Responses to the Prototype [0.5113447003407372]
The CLAIS system is designed to have 3-4 human learners join an AI speaker to form a small group, where humans and AI are considered as peers participating in the Jigsaw learning process.
The CLAIS system was successfully implemented in a Science Education course session with 15 pre-service elementary science teachers.
arXiv Detail & Related papers (2023-12-20T01:19:03Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AI is a process in which humans and AI algorithms continuously influence each other.
This paper introduces Coevolution AI as the cornerstone for a new field of study at the intersection between AI and complexity science.
arXiv Detail & Related papers (2023-06-23T18:10:54Z) - An Augmented Reality Platform for Introducing Reinforcement Learning to
K-12 Students with Robots [10.835598738100359]
We propose an Augmented Reality (AR) system that reveals the hidden state of the learning to the human users.
This paper describes our system's design and implementation and concludes with a discussion on two directions for future work.
arXiv Detail & Related papers (2021-10-10T03:51:39Z) - Human-Centered AI for Data Science: A Systematic Approach [48.71756559152512]
Human-Centered AI (HCAI) refers to the research effort that aims to design and implement AI techniques to support various human tasks.
We illustrate how we approach HCAI using a series of research projects around Data Science (DS) works as a case study.
arXiv Detail & Related papers (2021-10-03T21:47:13Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z) - Learning to Complement Humans [67.38348247794949]
A rising vision for AI in the open world centers on the development of systems that can complement humans for perceptual, diagnostic, and reasoning tasks.
We demonstrate how an end-to-end learning strategy can be harnessed to optimize the combined performance of human-machine teams.
arXiv Detail & Related papers (2020-05-01T20:00:23Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.