論文の概要: Learning Linear Policies for Robust Bipedal Locomotion on Terrains with
Varying Slopes
- arxiv url: http://arxiv.org/abs/2104.01662v1
- Date: Sun, 4 Apr 2021 18:50:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-06 14:46:34.966586
- Title: Learning Linear Policies for Robust Bipedal Locomotion on Terrains with
Varying Slopes
- Title(参考訳): 傾斜地形におけるロバスト二足歩行に対する線形政策の学習
- Authors: Lokesh Krishna, Utkarsh A. Mishra, Guillermo A. Castillo, Ayonga
Hereid, Shishir Kolathaya
- Abstract要約: 我々はこのポリシーを,2つのロボットプラットフォームであるrabbitとdigitで,モデルフリーで勾配フリーな学習アルゴリズムであるars( augmented random search)を通じて学習する。
後方歩行、ステップインプレース、最大120 Nの外部プッシュからのリカバリなどの追加の動作を示します。
その結果,斜面の異なる地形で二足歩行を行う場合のロバストかつ高速なフィードバック制御法が得られた。
- 参考スコア(独自算出の注目度): 5.737287537823072
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, with a view toward deployment of light-weight control
frameworks for bipedal walking robots, we realize end-foot trajectories that
are shaped by a single linear feedback policy. We learn this policy via a
model-free and a gradient-free learning algorithm, Augmented Random Search
(ARS), in the two robot platforms Rabbit and Digit. Our contributions are
two-fold: a) By using torso and support plane orientation as inputs, we achieve
robust walking on slopes of up to 20 degrees in simulation. b) We demonstrate
additional behaviors like walking backwards, stepping-in-place, and recovery
from external pushes of up to 120 N. The end result is a robust and a fast
feedback control law for bipedal walking on terrains with varying slopes.
Towards the end, we also provide preliminary results of hardware transfer to
Digit.
- Abstract(参考訳): 本稿では,二足歩行ロボットのための軽量制御フレームワークの展開をめざして,単一の線形フィードバックポリシによって形成されるエンドフット軌道を実現する。
我々はこのポリシーを,2つのロボットプラットフォームであるrabbitとdigitで,モデルフリーで勾配フリーな学習アルゴリズムであるars( augmented random search)を通じて学習する。
a) 胴体を用いて、平面方向を入力としてサポートすることにより、シミュレーションで最大20度の斜面を頑健に歩くことができる。
b) 傾斜の異なる地形で二足歩行を行うための頑健かつ高速なフィードバック制御法として, 後方進路, 踏込み位置, 最大120Nの外部からの押し出しからの回復などの追加行動を示す。
最終的に、ハードウェアをDigitに転送する際の予備的な結果も提供する。
関連論文リスト
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
そこで我々は,AVコントローラのトレーニングにAPG(analytic Policy gradients)アプローチを適用可能なシミュレータを提案し,その設計を行う。
提案するフレームワークは, エージェントがより根底的なポリシーを学ぶのを助けるために, 環境力学の勾配を役立てる, エンド・ツー・エンドの訓練ループに, 微分可能シミュレータを組み込む。
ダイナミクスにおけるパフォーマンスとノイズに対する堅牢性の大幅な改善と、全体としてより直感的なヒューマンライクな処理が見られます。
論文 参考訳(メタデータ) (2024-09-12T11:50:06Z) - Impedance Matching: Enabling an RL-Based Running Jump in a Quadruped Robot [7.516046071926082]
シミュレーションロボットと現実ロボットのギャップを軽減するための新しい枠組みを提案する。
本フレームワークはパラメータ選択のための構造化ガイドラインとシミュレーションにおける動的ランダム化の範囲を提供する。
結果は、我々の知る限り、実四足歩行ロボットにおいて、RLベースの制御ポリシーによって実証された最も高く、最も長いジャンプの1つです。
論文 参考訳(メタデータ) (2024-04-23T14:52:09Z) - From Flies to Robots: Inverted Landing in Small Quadcopters with Dynamic
Perching [15.57055572401334]
逆着陸は、多くの動物のチラシの中で日常的な行動である。
我々は,任意の天井面接触条件に対する制御ポリシーを策定する。
小型クワッドコプターにおいて,強靭な逆着陸動作を達成できた。
論文 参考訳(メタデータ) (2024-02-29T21:09:08Z) - Inverted Landing in a Small Aerial Robot via Deep Reinforcement Learning
for Triggering and Control of Rotational Maneuvers [11.29285364660789]
高速で頑健な逆着陸は、特に機内でのセンシングと計算に完全に依存しながらも、空中ロボットにとって難しい偉業である。
これまでの研究では、一連の視覚的手がかりとキネマティックな動作の間に直接的な因果関係が特定され、小型の空中ロボットでこの困難なエアロバティックな操作を確実に実行することができた。
本研究では、まずDeep Reinforcement Learningと物理シミュレーションを用いて、頑健な逆着陸のための汎用的最適制御ポリシーを得る。
論文 参考訳(メタデータ) (2022-09-22T14:38:10Z) - A Walk in the Park: Learning to Walk in 20 Minutes With Model-Free
Reinforcement Learning [86.06110576808824]
深層強化学習は、制御されていない環境での学習ポリシーに対する有望なアプローチである。
機械学習アルゴリズムとライブラリの最近の進歩と、慎重に調整されたロボットコントローラを組み合わせることで、現実世界では4分で学習できる。
論文 参考訳(メタデータ) (2022-08-16T17:37:36Z) - VAE-Loco: Versatile Quadruped Locomotion by Learning a Disentangled Gait
Representation [78.92147339883137]
本研究では,特定の歩行を構成する主要姿勢位相を捕捉する潜在空間を学習することにより,制御器のロバスト性を高めることが重要であることを示す。
本研究では,ドライブ信号マップの特定の特性が,歩幅,歩幅,立位などの歩行パラメータに直接関係していることを示す。
生成モデルを使用することで、障害の検出と緩和が容易になり、汎用的で堅牢な計画フレームワークを提供する。
論文 参考訳(メタデータ) (2022-05-02T19:49:53Z) - Learning Perceptual Locomotion on Uneven Terrains using Sparse Visual
Observations [75.60524561611008]
この研究は、人中心の環境において、よく見られるバンプ、ランプ、階段の広い範囲にわたる知覚的移動を達成するために、スパースな視覚的観察の使用を活用することを目的としている。
まず、関心の均一な面を表すことのできる最小限の視覚入力を定式化し、このような外受容的・固有受容的データを統合した学習フレームワークを提案する。
本研究では, 平地を全方向歩行し, 障害物のある地形を前方移動させるタスクにおいて, 学習方針を検証し, 高い成功率を示す。
論文 参考訳(メタデータ) (2021-09-28T20:25:10Z) - Reinforcement Learning for Robust Parameterized Locomotion Control of
Bipedal Robots [121.42930679076574]
シミュレーションにおけるロコモーションポリシをトレーニングするためのモデルフリー強化学習フレームワークを提案する。
ドメインランダム化は、システムダイナミクスのバリエーションにまたがる堅牢な振る舞いを学ぶためのポリシーを奨励するために使用されます。
本研究では、目標歩行速度、歩行高さ、旋回ヨーなどの多目的歩行行動について示す。
論文 参考訳(メタデータ) (2021-03-26T07:14:01Z) - RLOC: Terrain-Aware Legged Locomotion using Reinforcement Learning and
Optimal Control [6.669503016190925]
四元計画と制御のためのモデルベースとデータ駆動の統一的アプローチを提案する。
センサ情報と所望のベース速度コマンドを、強化学習ポリシーを用いて足踏み計画にマッピングする。
我々は、複雑な四足歩行システムであるANYmal Bの枠組みを訓練し、再訓練を必要とせず、より大きく重いロボットであるANYmal Cへの移動性を示す。
論文 参考訳(メタデータ) (2020-12-05T18:30:23Z) - Robust Quadrupedal Locomotion on Sloped Terrains: A Linear Policy
Approach [3.752600874088677]
私たちは、四足歩行ロボットStochに2ドル(約2万2000円)のリニアポリシーを使っています。
特に、エンドフット軌道のパラメータは、胴体方向と地形傾斜を入力として取る線形フィードバックポリシーによって形成される。
結果として生じる歩行は、地形の斜面の変動や外部のプッシュに対して堅牢である。
論文 参考訳(メタデータ) (2020-10-30T16:02:08Z) - Path Planning Followed by Kinodynamic Smoothing for Multirotor Aerial
Vehicles (MAVs) [61.94975011711275]
そこで本稿では,RRT*textquotedblrightのテキストを幾何学的にベースとした動き計画手法を提案する。
提案手法では,適応探索空間とステアリング機能を導入したオリジナルのRT*を改良した。
提案手法を様々なシミュレーション環境で検証した。
論文 参考訳(メタデータ) (2020-08-29T09:55:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。