論文の概要: Self-Supervised Learning of Multi-Object Keypoints for Robotic
Manipulation
- arxiv url: http://arxiv.org/abs/2205.08316v1
- Date: Tue, 17 May 2022 13:15:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-18 14:19:58.648262
- Title: Self-Supervised Learning of Multi-Object Keypoints for Robotic
Manipulation
- Title(参考訳): ロボットマニピュレーションのための多目的キーポイントの自己教師付き学習
- Authors: Jan Ole von Hartz, Eugenio Chisari, Tim Welschehold and Abhinav Valada
- Abstract要約: 本稿では,下流政策学習におけるDense Cor correspondence pretext Taskによる画像キーポイントの学習の有効性を示す。
我々は,多様なロボット操作タスクに対するアプローチを評価し,他の視覚表現学習手法と比較し,その柔軟性と有効性を示した。
- 参考スコア(独自算出の注目度): 8.939008609565368
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, policy learning methods using either reinforcement or
imitation have made significant progress. However, both techniques still suffer
from being computationally expensive and requiring large amounts of training
data. This problem is especially prevalent in real-world robotic manipulation
tasks, where access to ground truth scene features is not available and
policies are instead learned from raw camera observations. In this paper, we
demonstrate the efficacy of learning image keypoints via the Dense
Correspondence pretext task for downstream policy learning. Extending prior
work to challenging multi-object scenes, we show that our model can be trained
to deal with important problems in representation learning, primarily
scale-invariance and occlusion. We evaluate our approach on diverse robot
manipulation tasks, compare it to other visual representation learning
approaches, and demonstrate its flexibility and effectiveness for
sample-efficient policy learning.
- Abstract(参考訳): 近年,強化法と模倣法の両方を用いた政策学習法が大きな進歩を遂げている。
しかし、どちらの手法も計算コストが高く、大量のトレーニングデータを必要とする。
この問題は、現実のロボット操作タスクで特に一般的であり、地上の真実のシーン機能にアクセスできず、代わりに生のカメラの観察からポリシーを学ぶことができる。
本稿では,下流政策学習におけるDense Cor correspondence pretext Taskによる画像キーポイントの学習の有効性を示す。
先行研究を多目的シーンに拡張することで、表現学習における重要な問題、主にスケール不変性や閉塞性を扱うために、我々のモデルを訓練できることが示される。
我々は,多様なロボット操作タスクに対するアプローチを評価し,他の視覚表現学習手法と比較し,その柔軟性と有効性を示した。
関連論文リスト
- Self-Explainable Affordance Learning with Embodied Caption [63.88435741872204]
具体的キャプションを具現化したSelf-Explainable Affordance Learning (SEA)を紹介する。
SEAは、ロボットが意図を明確に表現し、説明可能な視覚言語キャプションと視覚能力学習のギャップを埋めることを可能にする。
本稿では, 簡便かつ効率的な方法で, 空き地と自己説明を効果的に組み合わせた新しいモデルを提案する。
論文 参考訳(メタデータ) (2024-04-08T15:22:38Z) - End-to-End Affordance Learning for Robotic Manipulation [4.405918052597016]
インタラクティブな環境で3Dオブジェクトを操作することの学習は、強化学習において難しい問題であった。
視覚的余裕は、効果的に実行可能なセマンティクスを備えたオブジェクト中心の情報提供において、大きな見通しを示してきた。
本研究では,RL学習過程において生成した接触情報を用いて視覚的余裕を生かし,興味のある接触マップを予測する。
論文 参考訳(メタデータ) (2022-09-26T18:24:28Z) - Visuomotor Control in Multi-Object Scenes Using Object-Aware
Representations [25.33452947179541]
ロボット作業におけるオブジェクト指向表現学習の有効性を示す。
本モデルは,サンプル効率のよい制御ポリシーを学習し,最先端のオブジェクト技術より優れている。
論文 参考訳(メタデータ) (2022-05-12T19:48:11Z) - What Matters in Learning from Offline Human Demonstrations for Robot
Manipulation [64.43440450794495]
ロボット操作のための6つのオフライン学習アルゴリズムについて広範な研究を行う。
我々の研究は、オフラインの人間のデータから学習する際の最も重要な課題を分析します。
人間のデータセットから学ぶ機会を強調します。
論文 参考訳(メタデータ) (2021-08-06T20:48:30Z) - Visual Adversarial Imitation Learning using Variational Models [60.69745540036375]
逆関数仕様は、深い強化学習を通しての学習行動にとって大きな障害であり続けている。
望ましい行動の視覚的なデモンストレーションは、エージェントを教えるためのより簡単で自然な方法を示すことが多い。
変動モデルに基づく対向的模倣学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-07-16T00:15:18Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
本稿では,少数のトレーニング画像にのみ手動アノテーションを応用して,効果的なサルエント物体検出モデルを学習することを提案する。
我々は,このタスクを,少額の有能な物体検出とみなし,少数のコストの学習シナリオを促進するために,APL(Adversarialpaced Learning)ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-05T14:15:49Z) - A Framework for Efficient Robotic Manipulation [79.10407063260473]
単一のロボットアームがピクセルからスパースリワード操作ポリシーを学習できることを示します。
デモは10回しかなく、単一のロボットアームがピクセルからスパースリワード操作のポリシーを学習できることを示しています。
論文 参考訳(メタデータ) (2020-12-14T22:18:39Z) - Visual Imitation Made Easy [102.36509665008732]
本稿では,ロボットへのデータ転送を容易にしながら,データ収集プロセスを単純化する,模倣のための代替インターフェースを提案する。
我々は、データ収集装置やロボットのエンドエフェクターとして、市販のリーチ・グラブラー補助具を使用する。
我々は,非包括的プッシュと包括的積み重ねという2つの課題について実験的に評価した。
論文 参考訳(メタデータ) (2020-08-11T17:58:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。