Neurological Status Classification Using Convolutional Neural Network
- URL: http://arxiv.org/abs/2104.02058v1
- Date: Thu, 1 Apr 2021 22:40:28 GMT
- Title: Neurological Status Classification Using Convolutional Neural Network
- Authors: Mehrad Jaloli, Divya Choudhary and Marzia Cescon
- Abstract summary: We show that a Convolutional Neural Network (CNN) model is able to accuratelydiscriminate between 4 different phases of neurological status.
We demonstrate that the proposed model is able to obtain 99.99% AreaUnder the Curve (AUC) of Receiver Operation characteristic (ROC) and 99.82% classificationaccuracy on the test dataset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this study we show that a Convolutional Neural Network (CNN) model is able
to accuratelydiscriminate between 4 different phases of neurological status in
a non-Electroencephalogram(EEG) dataset recorded in an experiment in which
subjects are exposed to physical, cognitiveand emotional stress. We demonstrate
that the proposed model is able to obtain 99.99% AreaUnder the Curve (AUC) of
Receiver Operation characteristic (ROC) and 99.82% classificationaccuracy on
the test dataset. Furthermore, for comparison, we show that our models
outperformstraditional classification methods such as SVM, and RF. Finally, we
show the advantage of CNN models, in comparison to other methods, in robustness
to noise by 97.46% accuracy on a noisy dataset.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Predictive Analytics of Varieties of Potatoes [2.336821989135698]
We explore the application of machine learning algorithms specifically to enhance the selection process of Russet potato clones in breeding trials.
This study addresses the challenge of efficiently identifying high-yield, disease-resistant, and climate-resilient potato varieties.
arXiv Detail & Related papers (2024-04-04T00:49:05Z) - Few-shot learning for COVID-19 Chest X-Ray Classification with
Imbalanced Data: An Inter vs. Intra Domain Study [49.5374512525016]
Medical image datasets are essential for training models used in computer-aided diagnosis, treatment planning, and medical research.
Some challenges are associated with these datasets, including variability in data distribution, data scarcity, and transfer learning issues when using models pre-trained from generic images.
We propose a methodology based on Siamese neural networks in which a series of techniques are integrated to mitigate the effects of data scarcity and distribution imbalance.
arXiv Detail & Related papers (2024-01-18T16:59:27Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Functional Neural Networks: Shift invariant models for functional data
with applications to EEG classification [0.0]
We introduce a new class of neural networks that are shift invariant and preserve smoothness of the data: functional neural networks (FNNs)
For this, we use methods from functional data analysis (FDA) to extend multi-layer perceptrons and convolutional neural networks to functional data.
We show that the models outperform a benchmark model from FDA in terms of accuracy and successfully use FNNs to classify electroencephalography (EEG) data.
arXiv Detail & Related papers (2023-01-14T09:41:21Z) - Investigating Neuron Disturbing in Fusing Heterogeneous Neural Networks [6.389882065284252]
In this paper, we reveal the phenomenon of neuron disturbing, where neurons from heterogeneous local models interfere with each other mutually.
We propose an experimental method that excludes neuron disturbing and fuses neural networks via adaptively selecting a local model, called AMS, to execute the prediction.
arXiv Detail & Related papers (2022-10-24T06:47:48Z) - An Efficient End-to-End Deep Neural Network for Interstitial Lung
Disease Recognition and Classification [0.5424799109837065]
This paper introduces an end-to-end deep convolution neural network (CNN) for classifying ILDs patterns.
The proposed model comprises four convolutional layers with different kernel sizes and Rectified Linear Unit (ReLU) activation function.
A dataset consisting of 21328 image patches of 128 CT scans with five classes is taken to train and assess the proposed model.
arXiv Detail & Related papers (2022-04-21T06:36:10Z) - Classification of fNIRS Data Under Uncertainty: A Bayesian Neural
Network Approach [0.15229257192293197]
We use a Bayesian Neural Network (BNN) to carry out a binary classification on an open-access dataset.
Our model produced an overall classification accuracy of 86.44% over 30 volunteers.
arXiv Detail & Related papers (2021-01-18T15:43:59Z) - Statistical model-based evaluation of neural networks [74.10854783437351]
We develop an experimental setup for the evaluation of neural networks (NNs)
The setup helps to benchmark a set of NNs vis-a-vis minimum-mean-square-error (MMSE) performance bounds.
This allows us to test the effects of training data size, data dimension, data geometry, noise, and mismatch between training and testing conditions.
arXiv Detail & Related papers (2020-11-18T00:33:24Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
Regularization of neural networks (e.g. dropout) is a widespread technique in deep learning that allows for better generalization.
We show that data augmentation during the training improves the performance of both deterministic and versions of the same model.
However, the improvements obtained by the data augmentation completely eliminate the empirical regularization gains, making the performance of neural ODE and neural SDE negligible.
arXiv Detail & Related papers (2020-02-22T22:12:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.