論文の概要: Binary Neural Network for Speaker Verification
- arxiv url: http://arxiv.org/abs/2104.02306v1
- Date: Tue, 6 Apr 2021 06:04:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-07 13:49:23.639333
- Title: Binary Neural Network for Speaker Verification
- Title(参考訳): 話者検証のためのバイナリニューラルネットワーク
- Authors: Tinglong Zhu, Xiaoyi Qin, Ming Li
- Abstract要約: 本稿では,二元的ニューラルネットワークを話者検証の課題に適用する方法に焦点をあてる。
実験の結果、Convolutional Neural Networkをバイナライズした後、ResNet34ベースのネットワークは約5%のEERを達成した。
- 参考スコア(独自算出の注目度): 13.472791713805762
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although deep neural networks are successful for many tasks in the speech
domain, the high computational and memory costs of deep neural networks make it
difficult to directly deploy highperformance Neural Network systems on
low-resource embedded devices. There are several mechanisms to reduce the size
of the neural networks i.e. parameter pruning, parameter quantization, etc.
This paper focuses on how to apply binary neural networks to the task of
speaker verification. The proposed binarization of training parameters can
largely maintain the performance while significantly reducing storage space
requirements and computational costs. Experiment results show that, after
binarizing the Convolutional Neural Network, the ResNet34-based network
achieves an EER of around 5% on the Voxceleb1 testing dataset and even
outperforms the traditional real number network on the text-dependent dataset:
Xiaole while having a 32x memory saving.
- Abstract(参考訳): ディープニューラルネットワークは音声領域における多くのタスクで成功しているが、ディープニューラルネットワークの計算とメモリコストが高いため、低リソースの組み込みデバイスに高性能ニューラルネットワークシステムを直接デプロイすることは困難である。
ニューラルネットワークのサイズを減らすメカニズムはいくつかある。
パラメータのプルーニング、パラメータの量子化など。
本稿では,二元的ニューラルネットワークを話者検証の課題に適用する方法に焦点をあてる。
提案されたトレーニングパラメータのバイナリ化は、ストレージスペース要件と計算コストを大幅に削減しながら、パフォーマンスをほとんど維持することができる。
実験の結果、畳み込みニューラルネットワークをバイナライズした後、ResNet34ベースのネットワークはVoxceleb1テストデータセットで約5%のEERを達成し、テキスト依存データセットで従来の実数ネットワークであるXiaoleを32倍のメモリセーブで上回ります。
関連論文リスト
- Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
神経の持続性に影響を与える主な要因は,ネットワークの重みのばらつきと大きな重みの空間集中である。
単一層ではなく,ニューラルネットワーク全体へのニューラルネットワークの持続性に基づくフィルタリングの拡張を提案する。
これにより、ネットワーク内の永続的なパスを暗黙的に取り込み、分散に関連する問題を緩和するディープグラフの永続性測定が得られます。
論文 参考訳(メタデータ) (2023-07-20T13:34:11Z) - Neural Network Pruning as Spectrum Preserving Process [7.386663473785839]
行列スペクトル学習とニューラルネットワーク学習の密集層と畳み込み層との密接な関係を同定する。
本稿では,ニューラルネットワークのプルーニングに適した行列スペーシフィケーションアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-07-18T05:39:32Z) - A Faster Approach to Spiking Deep Convolutional Neural Networks [0.0]
スパイキングニューラルネットワーク(SNN)は、現在のディープニューラルネットワークよりも脳に近いダイナミクスを持つ。
ネットワークのランタイムと精度を改善するために,従来の作業に基づくネットワーク構造を提案する。
論文 参考訳(メタデータ) (2022-10-31T16:13:15Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Neural Network Quantization for Efficient Inference: A Survey [0.0]
ニューラルネットワークの量子化は、最近、ニューラルネットワークのサイズと複雑さを減らすというこの要求を満たすために発生した。
本稿では,過去10年間に開発された多くのニューラルネットワーク量子化技術について検討する。
論文 参考訳(メタデータ) (2021-12-08T22:49:39Z) - CondenseNeXt: An Ultra-Efficient Deep Neural Network for Embedded
Systems [0.0]
畳み込みニューラルネットワーク(英: Convolutional Neural Network, CNN)は、画像センサが捉えた視覚画像の分析に広く用いられているディープニューラルネットワーク(DNN)のクラスである。
本稿では,組込みシステム上でのリアルタイム推論のために,既存のCNNアーキテクチャの性能を改善するために,深層畳み込みニューラルネットワークアーキテクチャの新しい変種を提案する。
論文 参考訳(メタデータ) (2021-12-01T18:20:52Z) - Max and Coincidence Neurons in Neural Networks [0.07614628596146598]
ニューラルアーキテクチャサーチを用いて、最大ニューロンと偶然ニューロンのモデルを含むネットワークを最適化する。
我々は、信号処理ResNetを開発するために最適化ネットワークの構造、動作、ニューロンを分析する。
開発されたネットワークは、精度が平均2%向上し、さまざまなデータセットでネットワークサイズが25%向上した。
論文 参考訳(メタデータ) (2021-10-04T07:13:50Z) - Building Compact and Robust Deep Neural Networks with Toeplitz Matrices [93.05076144491146]
この論文は、コンパクトで、訓練が容易で、信頼性があり、敵の例に対して堅牢なニューラルネットワークを訓練する問題に焦点を当てている。
Toeplitzファミリーの構造化行列の特性を利用して、コンパクトでセキュアなニューラルネットワークを構築する。
論文 参考訳(メタデータ) (2021-09-02T13:58:12Z) - Reservoir Stack Machines [77.12475691708838]
メモリ拡張ニューラルネットワークは、情報ストレージを必要とするタスクをサポートするために、明示的なメモリを備えたリカレントニューラルネットワークを備える。
本研究では,全ての決定論的文脈自由言語を確実に認識できるモデルである貯水池スタックマシンを導入する。
以上の結果から, 貯水池スタックマシンは, 訓練データよりも長い試験シーケンスでもゼロ誤差を達成できることがわかった。
論文 参考訳(メタデータ) (2021-05-04T16:50:40Z) - Binary Graph Neural Networks [69.51765073772226]
グラフニューラルネットワーク(gnns)は、不規則データに対する表現学習のための強力で柔軟なフレームワークとして登場した。
本稿では,グラフニューラルネットワークのバイナライゼーションのための異なる戦略を提示し,評価する。
モデルの慎重な設計とトレーニングプロセスの制御によって、バイナリグラフニューラルネットワークは、挑戦的なベンチマークの精度において、適度なコストでトレーニングできることを示しています。
論文 参考訳(メタデータ) (2020-12-31T18:48:58Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。