Dynamics Investigation of the quantum-control-assisted multipartite
uncertainty relation in Heisenberg model with Dzyaloshinski-Moriya
interaction
- URL: http://arxiv.org/abs/2308.13334v1
- Date: Fri, 25 Aug 2023 12:11:42 GMT
- Title: Dynamics Investigation of the quantum-control-assisted multipartite
uncertainty relation in Heisenberg model with Dzyaloshinski-Moriya
interaction
- Authors: Jie Xu, Xiao Zheng, Ai-Ling Ji, Guo-Feng Zhang
- Abstract summary: Zheng constructs a quantum-control-assisted multipartite variance-based uncertainty relation.
We investigate the dynamics of the new uncertainty relation in the Heisenberg system with the Dzyaloshinski-Moriya interaction.
- Score: 10.664589057582157
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Recently, Zheng constructs a quantum-control-assisted multipartite
variance-based uncertainty relation, which successfully extends the conditional
uncertainty relation to the multipartite case [Annalen der physik, 533, 2100014
(2021)]. We here investigate the dynamics of the new uncertainty relation in
the Heisenberg system with the Dzyaloshinski-Moriya interaction. It is found
that, different from entanglement, the mixedness of the system has an
interesting single-valued relationship with the tightness and lower bound of
the uncertainty relation. This single-valued relationship indicates that the
tightness and lower bound of the uncertainty relation can be written as the
functional form of the mixedness. Moreover, the single-valued relationship with
the mixedness is the common nature of conditional uncertainty relations, and
has no relationship with the form of the uncertainty relations. Also, the
comparison between the new conditional variance-based uncertainty relation and
the existing entropic one has been made.
Related papers
- Observing tight triple uncertainty relations in two-qubit systems [21.034105385856765]
We demonstrate the uncertainty relations in two-qubit systems involving three physical components with the tight constant $2/sqrt3$.
Our results provide a new insight into understanding the uncertainty relations with multiple observables and may motivate more innovative applications in quantum information science.
arXiv Detail & Related papers (2024-10-08T11:24:24Z) - Unveiling quantum steering by quantum-classical uncertainty complementarity [0.0]
We introduce a novel complementarity relation between system's quantum and classical uncertainties.
We demonstrate a superior steering detection efficiency compared to an entropic uncertainty relation.
arXiv Detail & Related papers (2023-12-02T07:49:20Z) - Entanglement statistics of randomly interacting spins [62.997667081978825]
Entanglement depends on the underlying topology of the interaction among the qubits.
We investigate the entanglement in the ground state of systems comprising two and three qubits with random interactions.
arXiv Detail & Related papers (2023-07-18T23:58:32Z) - Dispersive Non-reciprocity between a Qubit and a Cavity [24.911532779175175]
We present an experimental study of a non-reciprocal dispersive-type interaction between a transmon qubit and a superconducting cavity.
We show that the qubit-cavity dynamics is well-described in a wide parameter regime by a simple non-reciprocal master-equation model.
arXiv Detail & Related papers (2023-07-07T17:19:18Z) - Physical interpretation of nonlocal quantum correlation through local
description of subsystems [19.542805787744133]
We propose the physical interpretation of nonlocal quantum correlation between two systems.
Different nonlocal quantum correlations can be discriminated from a single uncertainty relation derived under local hidden state (LHS)-LHS model only.
arXiv Detail & Related papers (2022-10-01T10:13:40Z) - Disturbance Enhanced Uncertainty Relations [2.075038010521211]
We show that disturbance of one measurement to a subsequent measurement sets lower-bounds to uncertainty.
The obtained relations, referred to as disturbance enhanced uncertainty relations, immediately find various applications in the field of quantum information.
We anticipate that this new twist on uncertainty principle may shed new light on quantum foundations and may also inspire further applications in the field of quantum information.
arXiv Detail & Related papers (2022-02-15T08:37:24Z) - Quantum Coherent States of Interacting Bose-Fermi Mixtures in One
Dimension [68.8204255655161]
We study two-component atomic gas mixtures in one dimension involving both bosons and fermions.
We report a rich variety of coherent ground-state phases that vary with the intrinsic and relative strength of the interactions.
arXiv Detail & Related papers (2021-10-26T17:52:37Z) - Experimental test of the majorization uncertainty relation with mixed
states [6.613272059966484]
The uncertainty relation lies at the heart of quantum theory and behaves as a non-classical constraint on the indeterminacies of incompatible observables in a system.
In this work we test the novel majorization uncertainty relations of three incompatible observables using a series of mixed states with adjustable mixing degrees.
arXiv Detail & Related papers (2021-04-07T01:18:32Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - An uncertainty view on complementarity and a complementarity view on
uncertainty [0.0]
We obtain a complete complementarity relation for quantum uncertainty, classical uncertainty, and predictability.
We show that Brukner-Zeilinger's invariant information quantifies both the wave and particle characters of a quanton.
arXiv Detail & Related papers (2020-07-09T20:40:25Z) - Geometric Formulation of Universally Valid Uncertainty Relation for
Error [1.696974372855528]
We present a new geometric formulation of uncertainty relation valid for any quantum measurements of statistical nature.
Owing to its simplicity and tangibility, our relation is universally valid and experimentally viable.
arXiv Detail & Related papers (2020-02-10T18:31:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.