Information Bottleneck Attribution for Visual Explanations of Diagnosis
and Prognosis
- URL: http://arxiv.org/abs/2104.02869v1
- Date: Wed, 7 Apr 2021 02:43:52 GMT
- Title: Information Bottleneck Attribution for Visual Explanations of Diagnosis
and Prognosis
- Authors: Ugur Demir, Ismail Irmakci, Elif Keles, Ahmet Topcu, Ziyue Xu,
Concetto Spampinato, Sachin Jambawalikar, Evrim Turkbey, Baris Turkbey, Ulas
Bagci
- Abstract summary: We introduce a robust visual explanation method to address this problem for medical applications.
Inspired by the information bottleneck concept, we mask the neural network representation with noise to find out important regions.
- Score: 8.325727554619325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual explanation methods have an important role in the prognosis of the
patients where the annotated data is limited or not available. There have been
several attempts to use gradient-based attribution methods to localize
pathology from medical scans without using segmentation labels. This research
direction has been impeded by the lack of robustness and reliability. These
methods are highly sensitive to the network parameters. In this study, we
introduce a robust visual explanation method to address this problem for
medical applications. We provide a highly innovative algorithm to quantifying
lesions in the lungs caused by the Covid-19 with high accuracy and robustness
without using dense segmentation labels. Inspired by the information bottleneck
concept, we mask the neural network representation with noise to find out
important regions. This approach overcomes the drawbacks of commonly used
Grad-Cam and its derived algorithms. The premise behind our proposed strategy
is that the information flow is minimized while ensuring the classifier
prediction stays similar. Our findings indicate that the bottleneck condition
provides a more stable and robust severity estimation than the similar
attribution methods.
Related papers
- An Intrinsically Explainable Approach to Detecting Vertebral Compression Fractures in CT Scans via Neurosymbolic Modeling [9.108675519106319]
Vertebral compression fractures (VCFs) are a common and potentially serious consequence of osteoporosis.
In high-stakes scenarios like opportunistic medical diagnosis, model interpretability is a key factor for the adoption of AI recommendations.
We introduce a neurosymbolic approach for VCF detection in CT volumes.
arXiv Detail & Related papers (2024-12-23T04:01:44Z) - DDSB: An Unsupervised and Training-free Method for Phase Detection in Echocardiography [37.32413956117856]
We propose an unsupervised and training-free method to identify End-Diastolic (ED) and End-Systolic (ES) frames.
By identifying anchor points and analyzing directional deformation, we effectively reduce dependence on the accuracy of initial segmentation images.
Our method achieves comparable accuracy to learning-based models without their associated drawbacks.
arXiv Detail & Related papers (2024-03-19T14:51:01Z) - CV-Attention UNet: Attention-based UNet for 3D Cerebrovascular Segmentation of Enhanced TOF-MRA Images [2.2265536092123006]
We propose the 3D cerebrovascular attention UNet method, named CV-AttentionUNet, for precise extraction of brain vessel images.
To combine the low and high semantics, we applied the attention mechanism.
We believe that the novelty of this algorithm lies in its ability to perform well on both labeled and unlabeled data.
arXiv Detail & Related papers (2023-11-16T22:31:05Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - DARE: Towards Robust Text Explanations in Biomedical and Healthcare
Applications [54.93807822347193]
We show how to adapt attribution robustness estimation methods to a given domain, so as to take into account domain-specific plausibility.
Next, we provide two methods, adversarial training and FAR training, to mitigate the brittleness characterized by DARE.
Finally, we empirically validate our methods with extensive experiments on three established biomedical benchmarks.
arXiv Detail & Related papers (2023-07-05T08:11:40Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Belief function-based semi-supervised learning for brain tumor
segmentation [23.21410263735263]
Deep learning makes it possible to detect and segment a lesion field using annotated data.
However, obtaining precisely annotated data is very challenging in the medical domain.
In this paper, we address the uncertain boundary problem by a new evidential neural network with an information fusion strategy.
arXiv Detail & Related papers (2021-01-29T22:39:16Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Potential Features of ICU Admission in X-ray Images of COVID-19 Patients [8.83608410540057]
This paper presents an original methodology for extracting semantic features that correlate to severity from a data set with patient ICU admission labels.
The methodology employs a neural network trained to recognise lung pathologies to extract the semantic features.
The method has shown to be capable of selecting images for the learned features, which could translate some information about their common locations in the lung.
arXiv Detail & Related papers (2020-09-26T13:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.