論文の概要: A Question-answering Based Framework for Relation Extraction Validation
- arxiv url: http://arxiv.org/abs/2104.02934v1
- Date: Wed, 7 Apr 2021 06:08:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-08 13:06:48.000600
- Title: A Question-answering Based Framework for Relation Extraction Validation
- Title(参考訳): 関係抽出検証のための質問応答型フレームワーク
- Authors: Jiayang Cheng, Haiyun Jiang, Deqing Yang, Yanghua Xiao
- Abstract要約: 我々は、関係抽出の性能をさらに向上させる上で、検証は重要かつ有望な方向であると論じる。
関係抽出モデルから結果を検証するための新しい質問応答ベースのフレームワークを提案する。
- 参考スコア(独自算出の注目度): 18.132034601588742
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Relation extraction is an important task in knowledge acquisition and text
understanding. Existing works mainly focus on improving relation extraction by
extracting effective features or designing reasonable model structures.
However, few works have focused on how to validate and correct the results
generated by the existing relation extraction models. We argue that validation
is an important and promising direction to further improve the performance of
relation extraction. In this paper, we explore the possibility of using
question answering as validation. Specifically, we propose a novel
question-answering based framework to validate the results from relation
extraction models. Our proposed framework can be easily applied to existing
relation classifiers without any additional information. We conduct extensive
experiments on the popular NYT dataset to evaluate the proposed framework, and
observe consistent improvements over five strong baselines.
- Abstract(参考訳): 関係抽出は知識獲得とテキスト理解において重要な課題である。
既存の研究は主に、効果的な特徴抽出や合理的なモデル構造の設計による関係抽出の改善に重点を置いている。
しかし、既存の関係抽出モデルによって生成された結果の検証と修正に焦点をあてた研究は少ない。
我々は、関係抽出の性能をさらに向上させる上で、検証は重要かつ有望な方向であると論じる。
本稿では,質問応答をバリデーションとして活用する可能性を検討する。
具体的には,関係抽出モデルから得られた結果を検証する新しい質問応答型フレームワークを提案する。
提案フレームワークは既存の関係分類器に対して,追加情報なしで容易に適用できる。
提案フレームワークを評価するために,nytデータセットを広範囲に実験し,5つの強力なベースラインに対して一貫した改善を観測した。
関連論文リスト
- Entity or Relation Embeddings? An Analysis of Encoding Strategies for Relation Extraction [19.019881161010474]
関係抽出は、本質的にはテキスト分類問題であり、事前学習言語モデル(LM)を微調整することで取り組める。
既存のアプローチでは、LMを微調整して頭と尾のエンティティの埋め込みを学習し、それらのエンティティの埋め込みから関係を予測する。
本稿では,より直接的な方法で関係を捉えることにより,関係抽出モデルを改善することができるという仮説を立てる。
論文 参考訳(メタデータ) (2023-12-18T09:58:19Z) - Zero-Shot Dialogue Relation Extraction by Relating Explainable Triggers
and Relation Names [28.441725610692714]
本稿では,トリガを捕捉し,これまで見つからなかった関係名に関連付ける能力を活用する手法を提案する。
ベンチマークのDialogREデータセットを用いた実験により,提案モデルが目視関係と目視関係の両面で有意な改善を達成できることが示された。
論文 参考訳(メタデータ) (2023-06-09T07:10:01Z) - Multimodal Relation Extraction with Cross-Modal Retrieval and Synthesis [89.04041100520881]
本研究は,対象物,文,画像全体に基づいて,テキストおよび視覚的証拠を検索することを提案する。
我々は,オブジェクトレベル,画像レベル,文レベル情報を合成し,同一性と異なるモダリティ間の推論を改善する新しい手法を開発した。
論文 参考訳(メタデータ) (2023-05-25T15:26:13Z) - REKnow: Enhanced Knowledge for Joint Entity and Relation Extraction [30.829001748700637]
関係抽出はテキストからすべての隠れた関係事実を抽出することを目的とした課題である。
様々な関係抽出設定下でうまく機能する統一されたフレームワークは存在しない。
これら2つの問題を緩和する知識強化型生成モデルを提案する。
本モデルは,WebNLG,NYT10,TACREDなど,複数のベンチマークや設定において優れた性能を実現する。
論文 参考訳(メタデータ) (2022-06-10T13:59:38Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z) - D-REX: Dialogue Relation Extraction with Explanations [65.3862263565638]
この研究は、部分的にラベル付けされたデータのみを使用しながら関係が存在することを示す説明を抽出することに焦点を当てている。
本稿では,政策誘導型半教師付きアルゴリズムD-REXを提案する。
約90%の人は、強いBERTに基づく関節関係抽出と説明モデルよりもD-REXの説明を好んでいる。
論文 参考訳(メタデータ) (2021-09-10T22:30:48Z) - Generative Relation Linking for Question Answering over Knowledge Bases [12.778133758613773]
そこで本稿では, フレーミングを生成問題とする関係リンク手法を提案する。
このようなシーケンス・ツー・シーケンス・モデルを拡張して,対象とする知識ベースから構造化データを注入する。
我々は、議論-関係ペアのリストからなる構造化された出力を生成するためにモデルを訓練し、知識検証のステップを可能にする。
論文 参考訳(メタデータ) (2021-08-16T20:33:43Z) - A Multi-Level Attention Model for Evidence-Based Fact Checking [58.95413968110558]
シーケンス構造をトレーニング可能な,シンプルなモデルを提案する。
Fact extract and VERification のための大規模データセットの結果、我々のモデルはグラフベースのアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2021-06-02T05:40:12Z) - Relation-Guided Representation Learning [53.60351496449232]
本稿では,サンプル関係を明示的にモデル化し,活用する表現学習手法を提案する。
私たちのフレームワークは、サンプル間の関係をよく保存します。
サンプルをサブスペースに埋め込むことにより,本手法が大規模なサンプル外問題に対処可能であることを示す。
論文 参考訳(メタデータ) (2020-07-11T10:57:45Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。