論文の概要: REKnow: Enhanced Knowledge for Joint Entity and Relation Extraction
- arxiv url: http://arxiv.org/abs/2206.05123v1
- Date: Fri, 10 Jun 2022 13:59:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-13 15:05:58.211373
- Title: REKnow: Enhanced Knowledge for Joint Entity and Relation Extraction
- Title(参考訳): reknow: 統合エンティティと関係抽出のための知識の強化
- Authors: Sheng Zhang, Patrick Ng, Zhiguo Wang, Bing Xiang
- Abstract要約: 関係抽出はテキストからすべての隠れた関係事実を抽出することを目的とした課題である。
様々な関係抽出設定下でうまく機能する統一されたフレームワークは存在しない。
これら2つの問題を緩和する知識強化型生成モデルを提案する。
本モデルは,WebNLG,NYT10,TACREDなど,複数のベンチマークや設定において優れた性能を実現する。
- 参考スコア(独自算出の注目度): 30.829001748700637
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Relation extraction is an important but challenging task that aims to extract
all hidden relational facts from the text. With the development of deep
language models, relation extraction methods have achieved good performance on
various benchmarks. However, we observe two shortcomings of previous methods:
first, there is no unified framework that works well under various relation
extraction settings; second, effectively utilizing external knowledge as
background information is absent. In this work, we propose a knowledge-enhanced
generative model to mitigate these two issues. Our generative model is a
unified framework to sequentially generate relational triplets under various
relation extraction settings and explicitly utilizes relevant knowledge from
Knowledge Graph (KG) to resolve ambiguities. Our model achieves superior
performance on multiple benchmarks and settings, including WebNLG, NYT10, and
TACRED.
- Abstract(参考訳): 関係抽出は,テキストからすべての隠れた関係事実を抽出することを目的とした重要な課題である。
深層言語モデルの開発により,関係抽出法は様々なベンチマークで良好な性能を発揮した。
しかし,従来の手法では,様々な関係抽出設定下でうまく機能する統一フレームワークが存在しないこと,背景情報がない場合に外部知識を効果的に活用すること,という2つの欠点が観察されている。
本研究では,これらの2つの問題を緩和する知識強化型生成モデルを提案する。
我々の生成モデルは,関係抽出設定下で関係三重項を逐次生成するための統一フレームワークであり,曖昧さを解決するために知識グラフ(kg)から関連する知識を明示的に活用している。
本モデルは,WebNLG,NYT10,TACREDなど,複数のベンチマークや設定において優れた性能を実現する。
関連論文リスト
- A Decoupling and Aggregating Framework for Joint Extraction of Entities and Relations [7.911978021993282]
本稿では,エンティティと関係を共同で抽出する新しいモデルを提案する。
本稿では,特徴符号化処理を主題の符号化,オブジェクトの符号化,関係の符号化という3つの部分に分割することを提案する。
我々のモデルは、過去の最先端モデルよりも優れています。
論文 参考訳(メタデータ) (2024-05-14T04:27:16Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - CARE: Co-Attention Network for Joint Entity and Relation Extraction [0.0]
本稿では,共同エンティティと関係抽出のためのコ・アテンション・ネットワークを提案する。
提案手法では,サブタスク毎に異なる表現を学習するための並列符号化方式を採用する。
このアプローチのコアとなるのは,2つのサブタスク間の双方向のインタラクションをキャプチャするコアテンションモジュールです。
論文 参考訳(メタデータ) (2023-08-24T03:40:54Z) - Leveraging Knowledge Graph Embeddings to Enhance Contextual
Representations for Relation Extraction [0.0]
コーパススケールに事前学習した知識グラフを組み込んだ文レベルの文脈表現への関係抽出手法を提案する。
提案手法の有望かつ非常に興味深い結果を示す一連の実験を行った。
論文 参考訳(メタデータ) (2023-06-07T07:15:20Z) - HIORE: Leveraging High-order Interactions for Unified Entity Relation
Extraction [85.80317530027212]
本稿では,統合エンティティ関係抽出のための新しい手法であるHIOREを提案する。
重要な洞察は、単語ペア間の複雑な関連を活用することである。
実験の結果,HIOREは従来最高の統一モデルよりも1.11.8 F1ポイント向上した。
論文 参考訳(メタデータ) (2023-05-07T14:57:42Z) - Knowledge-Enhanced Relation Extraction Dataset [8.612433805862619]
現在、知識強化関係抽出のための証拠文と知識グラフの両方を含む公開データセットは存在しない。
知識強化関係抽出データセット(KERED)について紹介する。
KEREDは各文にリレーショナルな事実を付加し、エンティティリンクを通じてエンティティの知識コンテキストを提供する。
論文 参考訳(メタデータ) (2022-10-19T13:23:10Z) - Modeling Multi-Granularity Hierarchical Features for Relation Extraction [26.852869800344813]
本稿では,原文のみに基づく多粒度特徴抽出手法を提案する。
外部知識を必要とせずに,効果的な構造的特徴が達成可能であることを示す。
論文 参考訳(メタデータ) (2022-04-09T09:44:05Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z) - Learning from Context or Names? An Empirical Study on Neural Relation
Extraction [112.06614505580501]
テキストにおける2つの主要な情報ソースの効果について検討する:テキストコンテキストとエンティティ参照(名前)
本稿では,関係抽出のための実体型コントラスト事前学習フレームワーク(RE)を提案する。
我々のフレームワークは、異なるREシナリオにおけるニューラルモデルの有効性と堅牢性を改善することができる。
論文 参考訳(メタデータ) (2020-10-05T11:21:59Z) - SEEK: Segmented Embedding of Knowledge Graphs [77.5307592941209]
本稿では,モデル複雑性を増大させることなく,高い競争力を持つ関係表現性を実現する軽量なモデリングフレームワークを提案する。
本フレームワークは,評価関数の設計に重点を置いており,1)十分な特徴相互作用の促進,2)関係の対称性と反対称性の両特性の保存,という2つの重要な特徴を強調している。
論文 参考訳(メタデータ) (2020-05-02T15:15:50Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
本稿では、知識グラフからのガイダンスを用いて、生テキスト上で学習する2つの自己教師型タスクを提案する。
エンティティレベルのマスキング言語モデルに基づいて、最初のコントリビューションはエンティティマスキングスキームです。
既存のパラダイムとは対照的に,本手法では事前学習時にのみ,知識グラフを暗黙的に使用する。
論文 参考訳(メタデータ) (2020-04-29T14:22:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。