Synthetic training data generation for deep learning based quality
inspection
- URL: http://arxiv.org/abs/2104.02980v1
- Date: Wed, 7 Apr 2021 08:07:57 GMT
- Title: Synthetic training data generation for deep learning based quality
inspection
- Authors: Pierre Gutierrez, Maria Luschkova, Antoine Cordier, Mustafa Shukor,
Mona Schappert, and Tim Dahmen
- Abstract summary: We present a generic simulation pipeline to render images of defective or healthy (non defective) parts.
We assess the quality of the generated images by training deep learning networks and by testing them on real data from a manufacturer.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep learning is now the gold standard in computer vision-based quality
inspection systems. In order to detect defects, supervised learning is often
utilized, but necessitates a large amount of annotated images, which can be
costly: collecting, cleaning, and annotating the data is tedious and limits the
speed at which a system can be deployed as everything the system must detect
needs to be observed first. This can impede the inspection of rare defects,
since very few samples can be collected by the manufacturer. In this work, we
focus on simulations to solve this issue. We first present a generic simulation
pipeline to render images of defective or healthy (non defective) parts. As
metallic parts can be highly textured with small defects like holes, we design
a texture scanning and generation method. We assess the quality of the
generated images by training deep learning networks and by testing them on real
data from a manufacturer. We demonstrate that we can achieve encouraging
results on real defect detection using purely simulated data. Additionally, we
are able to improve global performances by concatenating simulated and real
data, showing that simulations can complement real images to boost
performances. Lastly, using domain adaptation techniques helps improving
slightly our final results.
Related papers
- Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
We use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data.
Our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
arXiv Detail & Related papers (2024-03-23T22:32:06Z) - Free-ATM: Exploring Unsupervised Learning on Diffusion-Generated Images
with Free Attention Masks [64.67735676127208]
Text-to-image diffusion models have shown great potential for benefiting image recognition.
Although promising, there has been inadequate exploration dedicated to unsupervised learning on diffusion-generated images.
We introduce customized solutions by fully exploiting the aforementioned free attention masks.
arXiv Detail & Related papers (2023-08-13T10:07:46Z) - Anomaly Detection in Automated Fibre Placement: Learning with Data
Limitations [3.103778949672542]
We present a comprehensive framework for defect detection and localization in Automated Fibre Placement.
Our approach combines unsupervised deep learning and classical computer vision algorithms.
It efficiently detects various surface issues while requiring fewer images of composite parts for training.
arXiv Detail & Related papers (2023-07-15T22:13:36Z) - Deep Learning of Crystalline Defects from TEM images: A Solution for the
Problem of "Never Enough Training Data" [0.0]
In-situ TEM experiments can provide important insights into how dislocations behave and move.
The analysis of individual video frames can provide useful insights but is limited by the capabilities of automated identification.
In this work, a parametric model for generating synthetic training data for segmentation of dislocations is developed.
arXiv Detail & Related papers (2023-07-12T17:37:46Z) - A Novel Strategy for Improving Robustness in Computer Vision
Manufacturing Defect Detection [1.3198689566654107]
Visual quality inspection in high performance manufacturing can benefit from automation, due to cost savings and improved rigor.
Deep learning techniques are the current state of the art for generic computer vision tasks like classification and object detection.
Manufacturing data can pose a challenge for deep learning because data is highly repetitive and there are few images of defects or deviations to learn from.
arXiv Detail & Related papers (2023-05-16T12:51:51Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - Improving generalization with synthetic training data for deep learning
based quality inspection [0.0]
supervised deep learning requires a large amount of annotated images for training.
In practice, collecting and annotating such data is costly and laborious.
We show the use of randomly generated synthetic training images can help tackle domain instability.
arXiv Detail & Related papers (2022-02-25T16:51:01Z) - Is Deep Image Prior in Need of a Good Education? [57.3399060347311]
Deep image prior was introduced as an effective prior for image reconstruction.
Despite its impressive reconstructive properties, the approach is slow when compared to learned or traditional reconstruction techniques.
We develop a two-stage learning paradigm to address the computational challenge.
arXiv Detail & Related papers (2021-11-23T15:08:26Z) - Syn2Real Transfer Learning for Image Deraining using Gaussian Processes [92.15895515035795]
CNN-based methods for image deraining have achieved excellent performance in terms of reconstruction error as well as visual quality.
Due to challenges in obtaining real world fully-labeled image deraining datasets, existing methods are trained only on synthetically generated data.
We propose a Gaussian Process-based semi-supervised learning framework which enables the network in learning to derain using synthetic dataset.
arXiv Detail & Related papers (2020-06-10T00:33:18Z) - Unlimited Resolution Image Generation with R2D2-GANs [69.90258455164513]
We present a novel simulation technique for generating high quality images of any predefined resolution.
This method can be used to synthesize sonar scans of size equivalent to those collected during a full-length mission.
The data produced is continuous, realistically-looking, and can also be generated at least two times faster than the real speed of acquisition.
arXiv Detail & Related papers (2020-03-02T17:49:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.