論文の概要: Learning robust speech representation with an articulatory-regularized
variational autoencoder
- arxiv url: http://arxiv.org/abs/2104.03204v1
- Date: Wed, 7 Apr 2021 15:47:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-08 15:15:09.305248
- Title: Learning robust speech representation with an articulatory-regularized
variational autoencoder
- Title(参考訳): 調音規則化変分オートエンコーダによるロバスト表現の学習
- Authors: Marc-Antoine Georges, Laurent Girin, Jean-Luc Schwartz, Thomas Hueber
- Abstract要約: 顎、舌、唇、椎骨の構成を記述する調音パラメータを声道形状およびスペクトル特徴と関連付けることができる調音モデルを開発する。
この調音制約は,収束までの時間を短縮し,コンバージェンスにおける再構成損失を低減し,モデルトレーニングを改善できることを示す。
- 参考スコア(独自算出の注目度): 13.541055956177937
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is increasingly considered that human speech perception and production
both rely on articulatory representations. In this paper, we investigate
whether this type of representation could improve the performances of a deep
generative model (here a variational autoencoder) trained to encode and decode
acoustic speech features. First we develop an articulatory model able to
associate articulatory parameters describing the jaw, tongue, lips and velum
configurations with vocal tract shapes and spectral features. Then we
incorporate these articulatory parameters into a variational autoencoder
applied on spectral features by using a regularization technique that
constraints part of the latent space to follow articulatory trajectories. We
show that this articulatory constraint improves model training by decreasing
time to convergence and reconstruction loss at convergence, and yields better
performance in a speech denoising task.
- Abstract(参考訳): 人間の言語知覚と生産はどちらも調音表現に依存していると考えられている。
本稿では,音声特徴を符号化・復号化するために訓練された深部生成モデル(変分オートエンコーダ)の性能を向上させることができるかを検討する。
まず, 顎, 舌, 唇, 胸部構成を記述する調音パラメータと声道形状とスペクトル特徴を関連付けることができる調音モデルを構築した。
次に、これらの調音パラメータをスペクトル特徴に適用した変分オートエンコーダに取り入れ、潜在空間の一部に調音軌跡に従うように制約する正規化手法を用いた。
この調音制約は,収束までの時間を短縮し,コンバージェンスにおける再構成損失を低減し,モデルトレーニングを改善できることを示す。
関連論文リスト
- CoLM-DSR: Leveraging Neural Codec Language Modeling for Multi-Modal Dysarthric Speech Reconstruction [61.067153685104394]
変形性音声再建(DSR)は、変形性音声を正常な音声に変換することを目的としている。
話者の類似度は低く、プロソディの自然度は低い。
本稿では、ニューラルネットワークモデリングを利用して再構成結果を改善するマルチモーダルDSRモデルを提案する。
論文 参考訳(メタデータ) (2024-06-12T15:42:21Z) - SelfVC: Voice Conversion With Iterative Refinement using Self Transformations [42.97689861071184]
SelfVCは、自己合成例で音声変換モデルを改善するためのトレーニング戦略である。
本研究では,音声信号とSSL表現から韻律情報を導出する手法を開発し,合成モデルにおける予測サブモジュールの訓練を行う。
我々のフレームワークはテキストを使わずに訓練され、音声の自然性、話者の類似性、合成音声のインテリジェンス性を評価するため、ゼロショット音声変換を実現する。
論文 参考訳(メタデータ) (2023-10-14T19:51:17Z) - uSee: Unified Speech Enhancement and Editing with Conditional Diffusion
Models [57.71199494492223]
本稿では,条件付き拡散モデルを用いた統一音声強調編集(uSee)モデルを提案する。
実験の結果,提案したuSeeモデルは,他の生成的音声強調モデルと比較して,発声および発声の双方において優れた性能が得られることがわかった。
論文 参考訳(メタデータ) (2023-10-02T04:36:39Z) - High-Fidelity Speech Synthesis with Minimal Supervision: All Using
Diffusion Models [56.00939852727501]
最小教師付き音声合成は、2種類の離散音声表現を組み合わせることでTSを分離する。
非自己回帰フレームワークは、制御可能性を高め、持続拡散モデルは、多様化された韻律表現を可能にする。
論文 参考訳(メタデータ) (2023-09-27T09:27:03Z) - PAAPLoss: A Phonetic-Aligned Acoustic Parameter Loss for Speech
Enhancement [41.872384434583466]
知覚品質の違いを形式化する学習目標を提案する。
微分不可能な時間的音響パラメータを同定する。
時系列値を正確に予測できるニューラルネットワーク推定器を開発した。
論文 参考訳(メタデータ) (2023-02-16T05:17:06Z) - Repeat after me: Self-supervised learning of acoustic-to-articulatory
mapping by vocal imitation [9.416401293559112]
そこで本稿では,限定的な解釈可能な音声パラメータ集合から複雑な音声刺激を再現可能な,事前学習されたニューラル音声合成器を組み合わせた音声生成の計算モデルを提案する。
フォワードモデルと逆モデルの両方は、異なる話者からの生の音響のみの音声データから、自己指導的な方法で共同で訓練される。
模倣シミュレーションは客観的かつ主観的に評価され、非常に奨励的なパフォーマンスを示す。
論文 参考訳(メタデータ) (2022-04-05T15:02:49Z) - Discretization and Re-synthesis: an alternative method to solve the
Cocktail Party Problem [65.25725367771075]
この研究は、初めて合成に基づくアプローチがこの問題にうまく対応できることを示した。
具体的には,離散シンボルの認識に基づく音声分離/強調モデルを提案する。
離散シンボルの入力による合成モデルを利用することで、離散シンボル列の予測後、各ターゲット音声を再合成することができる。
論文 参考訳(メタデータ) (2021-12-17T08:35:40Z) - Ctrl-P: Temporal Control of Prosodic Variation for Speech Synthesis [68.76620947298595]
テキストは音声形式を完全には規定しないので、テキストから音声へのモデルは、対応するテキストで説明されない方法で異なる音声データから学習できなければならない。
韻律の3つの一次音響相関に明示的に条件付けされた音声を生成するモデルを提案する。
論文 参考訳(メタデータ) (2021-06-15T18:03:48Z) - Any-to-Many Voice Conversion with Location-Relative Sequence-to-Sequence
Modeling [61.351967629600594]
本稿では,非並列音声変換手法である非並列音声変換法(seq2seq)を提案する。
本手法では,ボトルネック特徴抽出器(BNE)とセック2セック合成モジュールを組み合わせる。
主観的および主観的評価は,提案手法が自然性と話者類似性の両方において優れた音声変換性能を有することを示す。
論文 参考訳(メタデータ) (2020-09-06T13:01:06Z) - Unsupervised Cross-Domain Speech-to-Speech Conversion with
Time-Frequency Consistency [14.062850439230111]
本稿では,逆行訓練におけるスペクトルの整合性を促進する条件を提案する。
Librispeech corpus を用いた実験結果から,TF の整合性で訓練したモデルにより,音声から音声への変換の精度が向上することが示唆された。
論文 参考訳(メタデータ) (2020-05-15T22:27:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。