A tale of two kinds of exceptional point in a hydrogen molecule
- URL: http://arxiv.org/abs/2104.03383v2
- Date: Tue, 22 Mar 2022 00:05:34 GMT
- Title: A tale of two kinds of exceptional point in a hydrogen molecule
- Authors: Himadri Barman and Suriyaa Valliapan
- Abstract summary: We study symmetric quantum physics in a non-Hermitian non-relativistic hydrogen molecule with local (Hubbard type) Coulomb interaction.
Our discovery may open the gates of a rich physics emerging out of a simple Hamiltonian resembling a two-site Hubbard model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the parity and time-reversal ($\mathcal{PT}$) symmetric quantum
physics in a non-Hermitian non-relativistic hydrogen molecule with local
(Hubbard type) Coulomb interaction. We consider non-Hermiticity generated from
both kinetic and orbital energies of the atoms and encounter the existence of
two different types of exceptional points (EPs) in pairs. These two kinds of EP
are characteristically different and depend differently on the interaction
strength. Our discovery may open the gates of a rich physics emerging out of a
simple Hamiltonian resembling a two-site Hubbard model.
Related papers
- Coherent dynamics of a nuclear-spin-isomer superposition [0.0]
We present a scheme that exploits an avoided crossing in the spectrum to create strong coupling between two uncoupled nuclear-spin-isomer states.
We model our scheme using a four-level Hamiltonian and explore the coherent dynamics in the different regimes and parameters of our system.
arXiv Detail & Related papers (2024-09-20T08:30:53Z) - Quantifying non-Hermiticity using single- and many-particle quantum properties [14.37149160708975]
The non-Hermitian paradigm of quantum systems displays salient features drastically different from Hermitian counterparts.
We propose a formalism that quantifies the (dis-)similarity of these right and left ensembles, for single- as well as many-particle quantum properties.
Our findings can be instrumental in unveiling new exotic quantum phases of non-Hermitian quantum many-body systems.
arXiv Detail & Related papers (2024-06-19T13:04:47Z) - Two-particle States in One-dimensional Coupled Bose-Hubbard Models [1.5727276506140881]
We study one-dimensional Bose-Hubbard models and solve for the wave functions and energies of two-particle eigenstates.
We find that the two-particle spectrum of the system with generic interactions comprises in general four different continua and three doublon dispersions.
arXiv Detail & Related papers (2022-01-14T16:14:34Z) - Coupled Cluster Downfolding Methods: the effect of double commutator
terms on the accuracy of ground-state energies [0.0]
We discuss the impact of higher-order terms originating in double commutators on the appearance of the downfolded Hamiltonians.
We demonstrate the efficiency of the many-body expansions involving single and double commutators for the unitary extension of the downfolded Hamiltonians.
arXiv Detail & Related papers (2021-10-22T21:49:45Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z) - Dynamically encircling an exceptional point in a real quantum system [13.510562179346167]
The exceptional point, known as the non-Hermitian degeneracy, has special topological structure.
Here we experimentally demonstrate dynamically encircling the exceptional point with a single nitrogen-vacancy center in diamond.
Our work reveals the topological structure of the exceptional point and paves the way to comprehensively explore the exotic properties of non-Hermitian Hamiltonians in the quantum regime.
arXiv Detail & Related papers (2020-02-17T06:41:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.