Efficient Quantum Digital Signatures without Symmetrization Step
- URL: http://arxiv.org/abs/2104.03470v1
- Date: Thu, 8 Apr 2021 01:54:50 GMT
- Title: Efficient Quantum Digital Signatures without Symmetrization Step
- Authors: Yu-Shuo Lu, Xiao-Yu Cao, Chen-Xun Weng, Jie Gu, Yuan-Mei Xie, Min-Gang
Zhou, Hua-Lei Yin, Zeng-Bing Chen
- Abstract summary: Quantum digital signatures (QDS) exploit quantum laws to guarantee non-repudiation, unforgeability and transferability of messages.
Current QDS protocols face two major restrictions, including the requirement of the symmetrization step.
We present an efficient QDS protocol to overcome these issues by utilizing the classical post-processing operation called post-matching method.
- Score: 7.848038078036641
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum digital signatures (QDS) exploit quantum laws to guarantee
non-repudiation, unforgeability and transferability of messages with
information-theoretic security. Current QDS protocols face two major
restrictions, including the requirement of the symmetrization step with
additional secure classical channels and quadratic scaling of the signature
rate with the probability of detection events. Here, we present an efficient
QDS protocol to overcome these issues by utilizing the classical
post-processing operation called post-matching method. Our protocol does not
need the symmetrization step, and the signature rate scales linearly with the
probability of detection events. Simulation results show that the signature
rate is three orders of magnitude higher than the original protocol in a
100-km-long fiber. This protocol is compatible with existing quantum
communication infrastructure, therefore we anticipate that it will play a
significant role in providing digital signatures with unconditional security.
Related papers
- Quantum digital signature based on single-qubit without a trusted third-party [45.41082277680607]
We propose a brand new quantum digital signature protocol without a trusted third party only with qubit technology to further improve the security.
We prove that the protocol has information-theoretical unforgeability. Moreover, it satisfies other important secure properties, including asymmetry, undeniability, and expandability.
arXiv Detail & Related papers (2024-10-17T09:49:29Z) - Continuous-variable quantum digital signatures that can withstand coherent attacks [5.777874043843867]
Quantum digital signatures (QDSs) guarantee authenticity, integrity, and nonrepudiation of classical messages based on quantum laws.
We introduce a CV QDS protocol designed to withstand general coherent attacks through the use of a cutting-edge fidelity test function.
Results demonstrate a significant reduction of eight orders of magnitude in signature length for a megabit message signing task.
arXiv Detail & Related papers (2024-07-04T03:39:59Z) - Increasing Interference Detection in Quantum Cryptography using the Quantum Fourier Transform [0.0]
We present two quantum cryptographic protocols leveraging the quantum Fourier transform (QFT)
The foremost of these protocols is a novel QKD method that leverages this effectiveness of the QFT.
We additionally show how existing quantum encryption methods can be augmented with a QFT-based approach to improve eavesdropping detection.
arXiv Detail & Related papers (2024-04-18T21:04:03Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Robust and efficient verification of graph states in blind
measurement-based quantum computation [52.70359447203418]
Blind quantum computation (BQC) is a secure quantum computation method that protects the privacy of clients.
It is crucial to verify whether the resource graph states are accurately prepared in the adversarial scenario.
Here, we propose a robust and efficient protocol for verifying arbitrary graph states with any prime local dimension.
arXiv Detail & Related papers (2023-05-18T06:24:45Z) - A Feasible Hybrid Quantum-Assisted Digital Signature for Arbitrary
Message Length [0.0]
We propose a new quantum-assisted digital signature protocol based on symmetric keys generated by QKD.
The protocol is described for a three-user scenario composed of one sender and two receivers.
arXiv Detail & Related papers (2023-03-01T19:00:02Z) - One-Time Universal Hashing Quantum Digital Signatures without Perfect
Keys [24.240914319917053]
We show that imperfect quantum keys with limited information leakage can be used for digital signatures and authentication without compromising security.
This study significantly reduces the delay for data postprocessing and is compatible with any quantum key generation protocols.
arXiv Detail & Related papers (2023-01-03T14:54:27Z) - Single-photon-memory measurement-device-independent quantum secure
direct communication [63.75763893884079]
Quantum secure direct communication (QSDC) uses the quantum channel to transmit information reliably and securely.
In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed.
We propose a single-photon-memory MDI QSDC protocol (SPMQC) for dispensing with high-performance quantum memory.
arXiv Detail & Related papers (2022-12-12T02:23:57Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Twin-field quantum digital signatures [4.503555294002338]
Digital signature is a key technique in information security, especially for identity authentications.
Quantum digital signatures (QDSs) provide a considerably higher level of security, i.e., information-theoretic security.
arXiv Detail & Related papers (2020-03-25T08:04:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.