A Feasible Hybrid Quantum-Assisted Digital Signature for Arbitrary
Message Length
- URL: http://arxiv.org/abs/2303.00767v1
- Date: Wed, 1 Mar 2023 19:00:02 GMT
- Title: A Feasible Hybrid Quantum-Assisted Digital Signature for Arbitrary
Message Length
- Authors: Marta Irene Garc\'ia Cid, Laura Ortiz Mart\'in, David Domingo
Mart\'in, Rodrigo Mart\'in S\'anchez-Ledesma, Juan Pedro Brito M\'endez,
Vicente Mart\'in Ayuso
- Abstract summary: We propose a new quantum-assisted digital signature protocol based on symmetric keys generated by QKD.
The protocol is described for a three-user scenario composed of one sender and two receivers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Currently used digital signatures based on asymmetric cryptography will be
vulnerable to quantum computers running Shor's algorithm. In this work, we
propose a new quantum-assisted digital signature protocol based on symmetric
keys generated by QKD, that allows signing and verifying messages in a simple
way implementing an integration of currently available classical and quantum
technologies. The protocol is described for a three-user scenario composed of
one sender and two receivers. In contrast to previous schemes, it is
independent of the message length. The security of the protocol has been
analyzed, as well as its integrity, authenticity and non-repudiation
properties.
Related papers
- Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Quantum digital signature based on single-qubit without a trusted third-party [45.41082277680607]
We propose a brand new quantum digital signature protocol without a trusted third party only with qubit technology to further improve the security.
We prove that the protocol has information-theoretical unforgeability. Moreover, it satisfies other important secure properties, including asymmetry, undeniability, and expandability.
arXiv Detail & Related papers (2024-10-17T09:49:29Z) - Revocable Encryption, Programs, and More: The Case of Multi-Copy Security [48.53070281993869]
We show the feasibility of revocable primitives, such as revocable encryption and revocable programs.
This suggests that the stronger notion of multi-copy security is within reach in unclonable cryptography.
arXiv Detail & Related papers (2024-10-17T02:37:40Z) - Efficient Arbitrated Quantum Digital Signature with Multi-Receiver Verification [3.6788660756664773]
Quantum digital signature is used to authenticate the identity of the signer with theoretical security.
In traditional multi-receiver quantum digital signature schemes without an arbitrater, the transferability of one-to-one signature is always required to achieve unforgeability.
We propose an arbitrated quantum digital signature scheme, in which the signature can be verified by multiple receivers simultaneously.
arXiv Detail & Related papers (2024-06-12T02:46:54Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - Revocable Quantum Digital Signatures [57.25067425963082]
We define and construct digital signatures with revocable signing keys from the LWE assumption.
In this primitive, the signing key is a quantum state which enables a user to sign many messages.
Once the key is successfully revoked, we require that the initial recipient of the key loses the ability to sign.
arXiv Detail & Related papers (2023-12-21T04:10:07Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - One-Time Universal Hashing Quantum Digital Signatures without Perfect
Keys [24.240914319917053]
We show that imperfect quantum keys with limited information leakage can be used for digital signatures and authentication without compromising security.
This study significantly reduces the delay for data postprocessing and is compatible with any quantum key generation protocols.
arXiv Detail & Related papers (2023-01-03T14:54:27Z) - Efficient Quantum Digital Signatures without Symmetrization Step [7.848038078036641]
Quantum digital signatures (QDS) exploit quantum laws to guarantee non-repudiation, unforgeability and transferability of messages.
Current QDS protocols face two major restrictions, including the requirement of the symmetrization step.
We present an efficient QDS protocol to overcome these issues by utilizing the classical post-processing operation called post-matching method.
arXiv Detail & Related papers (2021-04-08T01:54:50Z) - Twin-field quantum digital signatures [4.503555294002338]
Digital signature is a key technique in information security, especially for identity authentications.
Quantum digital signatures (QDSs) provide a considerably higher level of security, i.e., information-theoretic security.
arXiv Detail & Related papers (2020-03-25T08:04:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.