Conformal Prediction Intervals for Remaining Useful Lifetime Estimation
- URL: http://arxiv.org/abs/2212.14612v1
- Date: Fri, 30 Dec 2022 09:34:29 GMT
- Title: Conformal Prediction Intervals for Remaining Useful Lifetime Estimation
- Authors: Alireza Javanmardi and Eyke H\"ullermeier
- Abstract summary: We investigate the conformal prediction (CP) framework that represents uncertainty by predicting sets of possible values for the target variable.
CP formally guarantees that the actual value (true RUL) is covered by the predicted set with a degree of certainty that can be prespecified.
We study three CP algorithms to conformalize any single-point RUL predictor and turn it into a valid interval predictor.
- Score: 5.171601921549565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The main objective of Prognostics and Health Management is to estimate the
Remaining Useful Lifetime (RUL), namely, the time that a system or a piece of
equipment is still in working order before starting to function incorrectly. In
recent years, numerous machine learning algorithms have been proposed for RUL
estimation, mainly focusing on providing more accurate RUL predictions.
However, there are many sources of uncertainty in the problem, such as inherent
randomness of systems failure, lack of knowledge regarding their future states,
and inaccuracy of the underlying predictive models, making it infeasible to
predict the RULs precisely. Hence, it is of utmost importance to quantify the
uncertainty alongside the RUL predictions. In this work, we investigate the
conformal prediction (CP) framework that represents uncertainty by predicting
sets of possible values for the target variable (intervals in the case of RUL)
instead of making point predictions. Under very mild technical assumptions, CP
formally guarantees that the actual value (true RUL) is covered by the
predicted set with a degree of certainty that can be prespecified. We study
three CP algorithms to conformalize any single-point RUL predictor and turn it
into a valid interval predictor. Finally, we conformalize two single-point RUL
predictors, deep convolutional neural networks and gradient boosting, and
illustrate their performance on the Commercial Modular Aero-Propulsion System
Simulation (C-MAPSS) data sets.
Related papers
- Generalization and Informativeness of Conformal Prediction [36.407171992845456]
Con conformal prediction (CP) transforms an arbitrary base predictor into a set predictor with coverage guarantees.
CP certifies the predicted set to contain the target quantity with a user-defined tolerance, but it does not provide control over the average size of the predicted sets.
A theoretical connection is established between the generalization properties of the base predictor and the informativeness of the resulting CP prediction sets.
The derived upper bound provides insights into the dependence of the average size of the CP set predictor on the amount of calibration data, the target reliability, and the generalization performance of the base predictor.
arXiv Detail & Related papers (2024-01-22T10:14:45Z) - Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
We introduce SMASH: a Score MAtching estimator for learning markedPs with uncertainty quantification.
Specifically, our framework adopts a normalization-free objective by estimating the pseudolikelihood of markedPs through score-matching.
The superior performance of our proposed framework is demonstrated through extensive experiments in both event prediction and uncertainty quantification.
arXiv Detail & Related papers (2023-10-25T02:37:51Z) - Ensemble Neural Networks for Remaining Useful Life (RUL) Prediction [0.39287497907611874]
A core part of maintenance planning is a monitoring system that provides a good prognosis on health and degradation.
Here, we propose ensemble neural networks for probabilistic RUL predictions which considers both uncertainties and decouples these two uncertainties.
This method is tested on NASA's turbofan jet engine CMAPSS data-set.
arXiv Detail & Related papers (2023-09-21T19:38:44Z) - Uncertainty-Aware Performance Prediction for Highly Configurable
Software Systems via Bayesian Neural Networks [12.607426130997336]
We propose a Bayesian deep learning based method, namely BDLPerf, that can incorporate uncertainty into the prediction model.
We develop a novel uncertainty calibration technique to ensure the reliability of the confidence intervals generated by a Bayesian prediction model.
Our experimental results on 10 real-world systems show that BDLPerf achieves higher accuracy than existing approaches.
arXiv Detail & Related papers (2022-12-27T04:39:26Z) - Comparison of Uncertainty Quantification with Deep Learning in Time
Series Regression [7.6146285961466]
In this paper, different uncertainty estimation methods are compared to forecast meteorological time series data.
Results show how each uncertainty estimation method performs on the forecasting task.
arXiv Detail & Related papers (2022-11-11T14:29:13Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Accurate Remaining Useful Life Prediction with Uncertainty
Quantification: a Deep Learning and Nonstationary Gaussian Process Approach [0.0]
Remaining useful life (RUL) refers to the expected remaining lifespan of a component or system.
We devise a highly accurate RUL prediction model with uncertainty quantification, which integrates and leverages the advantages of deep learning and nonstationary Gaussian process regression (DL-NSGPR)
Our computational experiments show that the DL-NSGPR predictions are highly accurate with root mean square error 1.7 to 6.2 times smaller than those of competing RUL models.
arXiv Detail & Related papers (2021-09-23T18:19:58Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - Uncertainty-aware Remaining Useful Life predictor [57.74855412811814]
Remaining Useful Life (RUL) estimation is the problem of inferring how long a certain industrial asset can be expected to operate.
In this work, we consider Deep Gaussian Processes (DGPs) as possible solutions to the aforementioned limitations.
The performance of the algorithms is evaluated on the N-CMAPSS dataset from NASA for aircraft engines.
arXiv Detail & Related papers (2021-04-08T08:50:44Z) - AutoCP: Automated Pipelines for Accurate Prediction Intervals [84.16181066107984]
This paper proposes an AutoML framework called Automatic Machine Learning for Conformal Prediction (AutoCP)
Unlike the familiar AutoML frameworks that attempt to select the best prediction model, AutoCP constructs prediction intervals that achieve the user-specified target coverage rate.
We tested AutoCP on a variety of datasets and found that it significantly outperforms benchmark algorithms.
arXiv Detail & Related papers (2020-06-24T23:13:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.