A Reinforcement Learning Environment For Job-Shop Scheduling
- URL: http://arxiv.org/abs/2104.03760v1
- Date: Thu, 8 Apr 2021 13:26:30 GMT
- Title: A Reinforcement Learning Environment For Job-Shop Scheduling
- Authors: Pierre Tassel, Martin Gebser, Konstantin Schekotihin
- Abstract summary: This paper presents an efficient Deep Reinforcement Learning environment for Job-Shop Scheduling.
We design a meaningful and compact state representation as well as a novel, simple dense reward function.
We demonstrate that our approach significantly outperforms existing DRL methods on classic benchmark instances.
- Score: 2.036811219647753
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scheduling is a fundamental task occurring in various automated systems
applications, e.g., optimal schedules for machines on a job shop allow for a
reduction of production costs and waste. Nevertheless, finding such schedules
is often intractable and cannot be achieved by Combinatorial Optimization
Problem (COP) methods within a given time limit. Recent advances of Deep
Reinforcement Learning (DRL) in learning complex behavior enable new COP
application possibilities. This paper presents an efficient DRL environment for
Job-Shop Scheduling -- an important problem in the field. Furthermore, we
design a meaningful and compact state representation as well as a novel, simple
dense reward function, closely related to the sparse make-span minimization
criteria used by COP methods. We demonstrate that our approach significantly
outperforms existing DRL methods on classic benchmark instances, coming close
to state-of-the-art COP approaches.
Related papers
- Offline reinforcement learning for job-shop scheduling problems [1.3927943269211593]
This paper introduces a novel offline RL method designed for optimization problems with complex constraints.
Our approach encodes actions in edge attributes and balances expected rewards with the imitation of expert solutions.
We demonstrate the effectiveness of this method on job-shop scheduling and flexible job-shop scheduling benchmarks.
arXiv Detail & Related papers (2024-10-21T07:33:42Z) - Learning-enabled Flexible Job-shop Scheduling for Scalable Smart
Manufacturing [11.509669981978874]
In smart manufacturing systems, flexible job-shop scheduling with transportation constraints is essential to optimize solutions for maximizing productivity.
Recent developments in deep reinforcement learning (DRL)-based methods for FJSPT have encountered a scale generalization challenge.
We introduce a novel graph-based DRL method, named the Heterogeneous Graph Scheduler (HGS)
arXiv Detail & Related papers (2024-02-14T06:49:23Z) - Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
offline reinforcement learning (RL) paradigm provides recipe to convert static behavior datasets into policies that can perform better than the policy that collected the data.
In this paper, we propose an adaptive scheme for action quantization.
We show that several state-of-the-art offline RL methods such as IQL, CQL, and BRAC improve in performance on benchmarks when combined with our proposed discretization scheme.
arXiv Detail & Related papers (2023-10-18T06:07:10Z) - An End-to-End Reinforcement Learning Approach for Job-Shop Scheduling
Problems Based on Constraint Programming [5.070542698701157]
This paper proposes a novel end-to-end approach to solving scheduling problems by means of CP and Reinforcement Learning (RL)
Our approach leverages existing CP solvers to train an agent learning a Priority Dispatching Rule (PDR) that generalizes well to large instances, even from separate datasets.
arXiv Detail & Related papers (2023-06-09T08:24:56Z) - Flexible Job Shop Scheduling via Dual Attention Network Based
Reinforcement Learning [73.19312285906891]
In flexible job shop scheduling problem (FJSP), operations can be processed on multiple machines, leading to intricate relationships between operations and machines.
Recent works have employed deep reinforcement learning (DRL) to learn priority dispatching rules (PDRs) for solving FJSP.
This paper presents a novel end-to-end learning framework that weds the merits of self-attention models for deep feature extraction and DRL for scalable decision-making.
arXiv Detail & Related papers (2023-05-09T01:35:48Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - A Memetic Algorithm with Reinforcement Learning for Sociotechnical
Production Scheduling [0.0]
This article presents a memetic algorithm with applying deep reinforcement learning (DRL) to flexible job shop scheduling problems (DRC-FJSSP)
From research projects in industry, we recognize the need to consider flexible machines, flexible human workers, worker capabilities, setup and processing operations, material arrival times, complex job paths with parallel tasks for bill of material manufacturing, sequence-dependent setup times and (partially) automated tasks in human-machine-collaboration.
arXiv Detail & Related papers (2022-12-21T11:24:32Z) - Towards Deployment-Efficient Reinforcement Learning: Lower Bound and
Optimality [141.89413461337324]
Deployment efficiency is an important criterion for many real-world applications of reinforcement learning (RL)
We propose a theoretical formulation for deployment-efficient RL (DE-RL) from an "optimization with constraints" perspective.
arXiv Detail & Related papers (2022-02-14T01:31:46Z) - An Efficient Combinatorial Optimization Model Using Learning-to-Rank
Distillation [2.0137632982900207]
We present the learning-to-rank distillation-based COP framework, where a high-performance ranking policy can be distilled into a non-iterative, simple model.
Specifically, we employ the approximated ranking distillation to render a score-based ranking model learnable via gradient descent.
We demonstrate that a distilled model achieves comparable performance to its respective, high-performance RL, but also provides several times faster inferences.
arXiv Detail & Related papers (2021-12-24T10:52:47Z) - Towards Standardizing Reinforcement Learning Approaches for Stochastic
Production Scheduling [77.34726150561087]
reinforcement learning can be used to solve scheduling problems.
Existing studies rely on (sometimes) complex simulations for which the code is unavailable.
There is a vast array of RL designs to choose from.
standardization of model descriptions - both production setup and RL design - and validation scheme are a prerequisite.
arXiv Detail & Related papers (2021-04-16T16:07:10Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.