Robust Bayesian Inference for Simulator-based Models via the MMD
Posterior Bootstrap
- URL: http://arxiv.org/abs/2202.04744v1
- Date: Wed, 9 Feb 2022 22:12:19 GMT
- Title: Robust Bayesian Inference for Simulator-based Models via the MMD
Posterior Bootstrap
- Authors: Charita Dellaporta, Jeremias Knoblauch, Theodoros Damoulas,
Fran\c{c}ois-Xavier Briol
- Abstract summary: We propose a novel algorithm based on the posterior bootstrap and maximum mean discrepancy estimators.
This leads to a highly-parallelisable Bayesian inference algorithm with strong properties.
The approach is then assessed on a range of examples including a g-and-k distribution and a toggle-switch model.
- Score: 13.448658162594604
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulator-based models are models for which the likelihood is intractable but
simulation of synthetic data is possible. They are often used to describe
complex real-world phenomena, and as such can often be misspecified in
practice. Unfortunately, existing Bayesian approaches for simulators are known
to perform poorly in those cases. In this paper, we propose a novel algorithm
based on the posterior bootstrap and maximum mean discrepancy estimators. This
leads to a highly-parallelisable Bayesian inference algorithm with strong
robustness properties. This is demonstrated through an in-depth theoretical
study which includes generalisation bounds and proofs of frequentist
consistency and robustness of our posterior. The approach is then assessed on a
range of examples including a g-and-k distribution and a toggle-switch model.
Related papers
- A variational neural Bayes framework for inference on intractable posterior distributions [1.0801976288811024]
Posterior distributions of model parameters are efficiently obtained by feeding observed data into a trained neural network.
We show theoretically that our posteriors converge to the true posteriors in Kullback-Leibler divergence.
arXiv Detail & Related papers (2024-04-16T20:40:15Z) - All-in-one simulation-based inference [19.41881319338419]
We present a new amortized inference method -- the Simformer -- which overcomes current limitations.
The Simformer outperforms current state-of-the-art amortized inference approaches on benchmark tasks.
It can be applied to models with function-valued parameters, it can handle inference scenarios with missing or unstructured data, and it can sample arbitrary conditionals of the joint distribution of parameters and data.
arXiv Detail & Related papers (2024-04-15T10:12:33Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - On Least Square Estimation in Softmax Gating Mixture of Experts [78.3687645289918]
We investigate the performance of the least squares estimators (LSE) under a deterministic MoE model.
We establish a condition called strong identifiability to characterize the convergence behavior of various types of expert functions.
Our findings have important practical implications for expert selection.
arXiv Detail & Related papers (2024-02-05T12:31:18Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
The proposed algorithm is a distributed Bayesian filtering task for finite-state hidden Markov models.
It can be used for sequential state estimation, as well as for modeling opinion formation over social networks under dynamic environments.
arXiv Detail & Related papers (2022-12-05T19:40:17Z) - Nonparametric likelihood-free inference with Jensen-Shannon divergence
for simulator-based models with categorical output [1.4298334143083322]
Likelihood-free inference for simulator-based statistical models has attracted a surge of interest, both in the machine learning and statistics communities.
Here we derive a set of theoretical results to enable estimation, hypothesis testing and construction of confidence intervals for model parameters using computation properties of the Jensen-Shannon- divergence.
Such approximation offers a rapid alternative to more-intensive approaches and can be attractive for diverse applications of simulator-based models.
arXiv Detail & Related papers (2022-05-22T18:00:13Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Approximate Bayesian inference from noisy likelihoods with Gaussian
process emulated MCMC [0.24275655667345403]
We model the log-likelihood function using a Gaussian process (GP)
The main methodological innovation is to apply this model to emulate the progression that an exact Metropolis-Hastings (MH) sampler would take.
The resulting approximate sampler is conceptually simple and sample-efficient.
arXiv Detail & Related papers (2021-04-08T17:38:02Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Simulation-efficient marginal posterior estimation with swyft: stop
wasting your precious time [5.533353383316288]
We present algorithms for nested neural likelihood-to-evidence ratio estimation and simulation reuse.
Together, these algorithms enable automatic and extremely simulator efficient estimation of marginal and joint posteriors.
arXiv Detail & Related papers (2020-11-27T19:00:07Z) - Likelihood-Free Inference with Deep Gaussian Processes [70.74203794847344]
Surrogate models have been successfully used in likelihood-free inference to decrease the number of simulator evaluations.
We propose a Deep Gaussian Process (DGP) surrogate model that can handle more irregularly behaved target distributions.
Our experiments show how DGPs can outperform GPs on objective functions with multimodal distributions and maintain a comparable performance in unimodal cases.
arXiv Detail & Related papers (2020-06-18T14:24:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.