論文の概要: CondenseNet V2: Sparse Feature Reactivation for Deep Networks
- arxiv url: http://arxiv.org/abs/2104.04382v1
- Date: Fri, 9 Apr 2021 14:12:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-12 14:03:44.431266
- Title: CondenseNet V2: Sparse Feature Reactivation for Deep Networks
- Title(参考訳): CondenseNet V2: ディープネットワークのためのスパース機能更新
- Authors: Le Yang, Haojun Jiang, Ruojin Cai, Yulin Wang, Shiji Song, Gao Huang,
Qi Tian
- Abstract要約: 高密度接続によるディープネットワークの機能再利用は、高い計算効率を達成する効果的な方法である。
スパース機能再活性化(SFR)と呼ばれる代替アプローチを提案し、再利用機能の有用性を積極的に高めることを目指しています。
提案手法は画像分類(ImageNet, CIFAR)とオブジェクト検出(MSCOCO)において,理論的効率と実用的速度の両面で有望な性能を達成できることを示す。
- 参考スコア(独自算出の注目度): 87.38447745642479
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reusing features in deep networks through dense connectivity is an effective
way to achieve high computational efficiency. The recent proposed CondenseNet
has shown that this mechanism can be further improved if redundant features are
removed. In this paper, we propose an alternative approach named sparse feature
reactivation (SFR), aiming at actively increasing the utility of features for
reusing. In the proposed network, named CondenseNetV2, each layer can
simultaneously learn to 1) selectively reuse a set of most important features
from preceding layers; and 2) actively update a set of preceding features to
increase their utility for later layers. Our experiments show that the proposed
models achieve promising performance on image classification (ImageNet and
CIFAR) and object detection (MS COCO) in terms of both theoretical efficiency
and practical speed.
- Abstract(参考訳): 高密度接続によるディープネットワークの機能再利用は、高い計算効率を達成する効果的な方法である。
先日提案されたCondenseNetは、冗長な機能を削除すれば、このメカニズムをさらに改善できることを示した。
本稿では,スパース機能再活性化(SFR)という代替手法を提案する。
提案するネットワークであるCondenseNetV2では,1)先行層から最も重要な機能の集合を選択的に再利用し,2)先行層を積極的に更新し,後続層に対する有効性を向上する。
提案手法は画像分類(ImageNet, CIFAR)とオブジェクト検出(MSCOCO)において,理論的効率と実用的速度の両面で有望な性能を達成できることを示す。
関連論文リスト
- Deep Axial Hypercomplex Networks [1.370633147306388]
近年の研究では,超複雑ネットワークによる表現能力の向上が図られている。
本稿では、四元数2D畳み込み加群を2つの連続ベクトルマップ1D畳み込み加群に分解することで、このコストを削減する。
両ネットワークを組み込んで提案した超複素ネットワークは, 深部軸超複素ネットワークを構築するために構築可能な新しいアーキテクチャである。
論文 参考訳(メタデータ) (2023-01-11T18:31:00Z) - RDRN: Recursively Defined Residual Network for Image Super-Resolution [58.64907136562178]
深部畳み込みニューラルネットワーク(CNN)は、単一画像超解像において顕著な性能を得た。
本稿では,注目ブロックを効率的に活用する新しいネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-11-17T11:06:29Z) - Pushing the Efficiency Limit Using Structured Sparse Convolutions [82.31130122200578]
本稿では,画像の固有構造を利用して畳み込みフィルタのパラメータを削減する構造的スパース畳み込み(SSC)を提案する。
我々は、SSCが効率的なアーキテクチャにおける一般的なレイヤ(奥行き、グループ回り、ポイント回りの畳み込み)の一般化であることを示す。
SSCに基づくアーキテクチャは、CIFAR-10、CIFAR-100、Tiny-ImageNet、ImageNet分類ベンチマークのベースラインと比較して、最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-10-23T18:37:22Z) - Residual Local Feature Network for Efficient Super-Resolution [20.62809970985125]
本研究では,Residual Local Feature Network (RLFN)を提案する。
主なアイデアは、3つの畳み込みレイヤを局所的な特徴学習に使用して、機能の集約を単純化することだ。
さらに,NTIRE 2022の高効率超解像問題において,第1位を獲得した。
論文 参考訳(メタデータ) (2022-05-16T08:46:34Z) - Image Superresolution using Scale-Recurrent Dense Network [30.75380029218373]
畳み込みニューラルネットワーク(CNN)の設計の最近の進歩は、画像超解像(SR)の性能を大幅に向上させた。
残差ブロック内の一連の密接な接続を含む単位上に構築されたスケールリカレントSRアーキテクチャを提案する(Residual Dense Blocks (RDBs))。
我々のスケールリカレント設計は、現在の最先端のアプローチに比べてパラメトリックに効率的でありながら、より高いスケール要因の競合性能を提供する。
論文 参考訳(メタデータ) (2022-01-28T09:18:43Z) - Edge Rewiring Goes Neural: Boosting Network Resilience via Policy
Gradient [62.660451283548724]
ResiNetは、さまざまな災害や攻撃に対する回復力のあるネットワークトポロジを発見するための強化学習フレームワークである。
ResiNetは複数のグラフに対してほぼ最適のレジリエンス向上を実現し,ユーティリティのバランスを保ちながら,既存のアプローチに比べて大きなマージンを持つことを示す。
論文 参考訳(メタデータ) (2021-10-18T06:14:28Z) - Lightweight Single-Image Super-Resolution Network with Attentive
Auxiliary Feature Learning [73.75457731689858]
本稿では,SISR の注意補助機能 (A$2$F) に基づく計算効率が高く正確なネットワークを構築した。
大規模データセットを用いた実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-11-13T06:01:46Z) - Convolutional Networks with Dense Connectivity [59.30634544498946]
Dense Convolutional Network (DenseNet)を導入し、フィードフォワード方式で各レイヤを他のすべてのレイヤに接続する。
各レイヤについて、先行するすべてのレイヤのフィーチャーマップをインプットとして使用し、それ自身のフィーチャーマップをその後のすべてのレイヤへのインプットとして使用します。
提案したアーキテクチャを、4つの高度に競争力のあるオブジェクト認識ベンチマークタスクで評価する。
論文 参考訳(メタデータ) (2020-01-08T06:54:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。