論文の概要: A preliminary study on evaluating Consultation Notes with Post-Editing
- arxiv url: http://arxiv.org/abs/2104.04402v1
- Date: Fri, 9 Apr 2021 14:42:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-12 14:07:57.765361
- Title: A preliminary study on evaluating Consultation Notes with Post-Editing
- Title(参考訳): ポスト編集によるコンサルテーションノートの評価に関する予備的検討
- Authors: Francesco Moramarco, Alex Papadopoulos Korfiatis, Aleksandar Savkov,
Ehud Reiter
- Abstract要約: 医師が作成後にメモを編集して提出する半自動的なアプローチを提案します。
編集後,自動生成したコンサルテーションノートの時間節約に関する予備研究を行う。
これを時間をかけて、スクラッチからメモを書くより速いことに気付きます。
- 参考スコア(独自算出の注目度): 67.30200768442926
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic summarisation has the potential to aid physicians in streamlining
clerical tasks such as note taking. But it is notoriously difficult to evaluate
these systems and demonstrate that they are safe to be used in a clinical
setting. To circumvent this issue, we propose a semi-automatic approach whereby
physicians post-edit generated notes before submitting them. We conduct a
preliminary study on the time saving of automatically generated consultation
notes with post-editing. Our evaluators are asked to listen to mock
consultations and to post-edit three generated notes. We time this and find
that it is faster than writing the note from scratch. We present insights and
lessons learnt from this experiment.
- Abstract(参考訳): 自動要約は、ノートテイキングのような事務作業を合理化する医師を助ける可能性がある。
しかし、これらのシステムを評価して、臨床現場での使用が安全であることを実証することは、非常に難しい。
この問題を回避するために,医師が論文を編集後作成して提出する半自動手法を提案する。
編集後,自動生成したコンサルテーションノートの時間節約に関する予備研究を行う。
評価者は、モック・コンサルティングの聴取と、3つの生成されたノートの編集を依頼される。
これを時間をかけて、スクラッチからメモを書くより速いことに気付きます。
この実験から学んだ知見と教訓を提示する。
関連論文リスト
- Improving Clinical Note Generation from Complex Doctor-Patient Conversation [20.2157016701399]
大言語モデル(LLM)を用いた臨床ノート作成分野への3つの重要な貢献について述べる。
まず、CliniKnoteを紹介します。CliniKnoteは、1200の複雑な医師と患者との会話と、その全臨床ノートを組み合わせたデータセットです。
第2に,従来のSOAPcitepodder20soap(Subjective, Objective, Assessment, Plan)のメモを上位にキーワードセクションを追加することで,必須情報の迅速な識別を可能にするK-SOAPを提案する。
第3に、医師と患者との会話からK-SOAPノートを生成する自動パイプラインを開発し、様々な近代LCMをベンチマークする。
論文 参考訳(メタデータ) (2024-08-26T18:39:31Z) - Conceptualizing Machine Learning for Dynamic Information Retrieval of
Electronic Health Record Notes [6.1656026560972]
本研究は、特定の臨床コンテキストにおける注記関連性の監督源として、機械学習におけるEHR監査ログの使用を概念化したものである。
本手法は,個々のノート作成セッションでどのノートが読み込まれるかを予測するために0.963のAUCを実現できることを示す。
論文 参考訳(メタデータ) (2023-08-09T21:04:19Z) - Consultation Checklists: Standardising the Human Evaluation of Medical
Note Generation [58.54483567073125]
本稿では,コンサルテーションチェックリストの評価を基礎として,客観性向上を目的としたプロトコルを提案する。
このプロトコルを用いた最初の評価研究において,アノテータ間合意の良好なレベルを観察した。
論文 参考訳(メタデータ) (2022-11-17T10:54:28Z) - User-Driven Research of Medical Note Generation Software [49.85146209418244]
本稿では,医療用ノート生成システム開発における3ラウンドのユーザスタディについて述べる。
参加する臨床医の印象と,システムがどのようにそれらに価値あるものに適合すべきかの視点について論じる。
遠隔医療における3週間のシステムテストについて述べる。
論文 参考訳(メタデータ) (2022-05-05T10:18:06Z) - Human Evaluation and Correlation with Automatic Metrics in Consultation
Note Generation [56.25869366777579]
近年,機械学習モデルによる臨床相談ノートの作成が急速に進んでいる。
5人の臨床医が57件のモック・コンサルテーションを聴き、自作のノートを書き、自動的に生成されたノートを編集し、全てのエラーを抽出する、広範囲にわたる人的評価研究を行った。
単純な文字ベースのLevenshtein距離測定は、BertScoreのような一般的なモデルベースの測定値に比較して、同等に動作します。
論文 参考訳(メタデータ) (2022-04-01T14:04:16Z) - PriMock57: A Dataset Of Primary Care Mock Consultations [66.29154510369372]
本稿では,57件のモック・プライマリ・ケア・コンサルテーションからなる,パブリック・アクセス・高品質データセットの開発について詳述する。
我々の研究は、データセットが会話型医療ASRのベンチマークや、テキストからのコンサルティングノート生成にどのように使用できるかを説明する。
論文 参考訳(メタデータ) (2022-04-01T10:18:28Z) - Towards more patient friendly clinical notes through language models and
ontologies [57.51898902864543]
本稿では,単語の単純化と言語モデリングに基づく医療用テキストの自動作成手法を提案する。
我々は,公開医療文のデータセットペアと,臨床医による簡易化版を用いている。
本手法は,医学フォーラムデータに基づく言語モデルを用いて,文法と本来の意味の両方を保存しながら,より単純な文を生成する。
論文 参考訳(メタデータ) (2021-12-23T16:11:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。