Quantum computer error structure probed by quantum error correction syndrome measurements
- URL: http://arxiv.org/abs/2310.12448v2
- Date: Mon, 25 Mar 2024 00:45:07 GMT
- Title: Quantum computer error structure probed by quantum error correction syndrome measurements
- Authors: Spiro Gicev, Lloyd C. L. Hollenberg, Muhammad Usman,
- Abstract summary: We have assessed the performance of IBM superconducting quantum computer devices implementing heavy-hexagon code syndrome measurements.
Data from 16 repeated syndrome measurement cycles was found to be inconsistent with a uniform depolarizing noise model.
Results highlight the non-trivial structure which may be present in the noise of quantum error correction circuits.
- Score: 0.6435156676256051
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With quantum devices rapidly approaching qualities and scales needed for fault tolerance, the validity of simplified error models underpinning the study of quantum error correction needs to be experimentally evaluated. In this work, we have assessed the performance of IBM superconducting quantum computer devices implementing heavy-hexagon code syndrome measurements with increasing circuit sizes up to 23 qubits, against the error assumptions underpinning code threshold calculations. Circuit operator change rate statistics in the presence of depolarizing and biased noise were modelled using analytic functions of error model parameters. Data from 16 repeated syndrome measurement cycles was found to be inconsistent with a uniform depolarizing noise model, favouring instead biased and inhomogeneous noise models. Spatial-temporal correlations investigated via $Z$ stabilizer measurements revealed significant temporal correlation in detection events. These results highlight the non-trivial structure which may be present in the noise of quantum error correction circuits, revealed by operator measurement statistics, and support the development of noise-tailored codes and decoders to adapt.
Related papers
- Error mitigation with stabilized noise in superconducting quantum processors [2.2752198833969315]
We experimentally demonstrate that tuning of the qubit-TLS interactions helps reduce noise instabilities and enables more reliable error-mitigation performance.
We anticipate that the capabilities introduced here will be crucial for the exploration of quantum applications on solid-state processors at non-trivial scales.
arXiv Detail & Related papers (2024-07-02T17:47:07Z) - Transition Role of Entangled Data in Quantum Machine Learning [51.6526011493678]
Entanglement serves as the resource to empower quantum computing.
Recent progress has highlighted its positive impact on learning quantum dynamics.
We establish a quantum no-free-lunch (NFL) theorem for learning quantum dynamics using entangled data.
arXiv Detail & Related papers (2023-06-06T08:06:43Z) - Virtual quantum error detection [0.17999333451993949]
We propose a protocol called virtual quantum error detection (VQED)
VQED virtually allows for evaluating computation results corresponding to post-selected quantum states obtained through quantum error detection.
For some simple error models, the results obtained using VQED are robust against the noise that occurred during the operation of VQED.
arXiv Detail & Related papers (2023-02-06T08:52:50Z) - Lattice gauge theory and topological quantum error correction with
quantum deviations in the state preparation and error detection [0.0]
We focus on the topological surface code, and study the case when the code suffers from both noise and coherent noise on the multi-qubit entanglement gates.
We conclude that this type of unavoidable coherent errors could have a fatal impact on the error correction performance.
arXiv Detail & Related papers (2023-01-30T13:12:41Z) - Measurement based estimator scheme for continuous quantum error
correction [52.77024349608834]
Canonical discrete quantum error correction (DQEC) schemes use projective von Neumann measurements on stabilizers to discretize the error syndromes into a finite set.
Quantum error correction (QEC) based on continuous measurement, known as continuous quantum error correction (CQEC), can be executed faster than DQEC and can also be resource efficient.
We show that by constructing a measurement-based estimator (MBE) of the logical qubit to be protected, it is possible to accurately track the errors occurring on the physical qubits in real time.
arXiv Detail & Related papers (2022-03-25T09:07:18Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Fundamental thresholds of realistic quantum error correction circuits
from classical spin models [0.0]
We use Monte-Carlo simulations to study the resulting phase diagram of the associated interacting spin model.
The presented method provides an avenue to assess the fundamental thresholds of QEC codes and associated readout circuitry, independent of specific decoding strategies.
arXiv Detail & Related papers (2021-04-10T19:26:37Z) - Impact of correlations and heavy-tails on quantum error correction [0.0]
We show that space- and time-correlated single-qubit rotation errors can lead to high-weight errors in a quantum circuit when the rotation angles are drawn from heavy-tailed distributions.
This leads to a breakdown of quantum error correction, yielding reduced or in some cases no protection of the encoded logical qubits.
arXiv Detail & Related papers (2021-01-27T19:00:07Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.