Improving readout in quantum simulations with repetition codes
- URL: http://arxiv.org/abs/2105.13377v2
- Date: Mon, 14 Jun 2021 10:21:38 GMT
- Title: Improving readout in quantum simulations with repetition codes
- Authors: Jakob M. G\"unther, Francesco Tacchino, James R. Wootton, Ivano
Tavernelli, Panagiotis Kl. Barkoutsos
- Abstract summary: We use repetition codes as scalable schemes with the potential to provide more accurate solutions to problems of interest in quantum chemistry and physics.
We showcase our approach in multiple IBM Quantum devices and validate our results using a simplified theoretical noise model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Near term quantum computers suffer from the presence of different noise
sources. In order to mitigate for this effect and acquire results with
significantly better accuracy, there is the urge of designing efficient error
correction or error mitigation schemes. The cost of such techniques is usually
high in terms of resource requirements, either in hardware or at the
algorithmic level. In this work, we follow a pragmatic approach and we use
repetition codes as scalable schemes with the potential to provide more
accurate solutions to problems of interest in quantum chemistry and physics. We
investigate different repetition code layouts and we propose a circular
repetition scheme with connectivity requirements that are native on IBM Quantum
hardware. We showcase our approach in multiple IBM Quantum devices and validate
our results using a simplified theoretical noise model. We highlight the effect
of using the proposed scheme in an electronic structure VQE calculation and in
the simulation of time evolution for a quantum Ising model.
Related papers
- Peptide Binding Classification on Quantum Computers [3.9540968630765643]
We conduct an extensive study on using near-term quantum computers for a task in the domain of computational biology.
We perform sequence classification on a task relevant to the design of therapeutic proteins, and find competitive performance with classical baselines of similar scale.
This work constitutes the first proof-of-concept application of near-term quantum computing to a task critical to the design of therapeutic proteins.
arXiv Detail & Related papers (2023-11-27T10:32:31Z) - Quantum Robustness Verification: A Hybrid Quantum-Classical Neural
Network Certification Algorithm [1.439946676159516]
In this work, we investigate the verification of ReLU networks, which involves solving a robustness many-variable mixed-integer programs (MIPs)
To alleviate this issue, we propose to use QC for neural network verification and introduce a hybrid quantum procedure to compute provable certificates.
We show that, in a simulated environment, our certificate is sound, and provide bounds on the minimum number of qubits necessary to approximate the problem.
arXiv Detail & Related papers (2022-05-02T13:23:56Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Simulating open quantum many-body systems using optimised circuits in
digital quantum simulation [0.0]
We study models in open quantum systems with Trotterisations for the modified Schr"odinger equation (MSSE)
Minimising the leading error in MSSE enables to optimise the quantum circuits.
We run the algorithm on the IBM Quantum devices, showing that the current machine is challenging to give quantitatively accurate time dynamics due to the noise.
arXiv Detail & Related papers (2022-03-27T13:00:02Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Model-Independent Error Mitigation in Parametric Quantum Circuits and
Depolarizing Projection of Quantum Noise [1.5162649964542718]
Finding ground states and low-lying excitations of a given Hamiltonian is one of the most important problems in many fields of physics.
quantum computing on Noisy Intermediate-Scale Quantum (NISQ) devices offers the prospect to efficiently perform such computations.
Current quantum devices still suffer from inherent quantum noise.
arXiv Detail & Related papers (2021-11-30T16:08:01Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - A semi-agnostic ansatz with variable structure for quantum machine learning [0.3774866290142281]
Variational Quantum Algorithms (VQAs) offer a powerful, flexible paradigm for programming near-term quantum computers.
We present a variable structure approach to build ansatzes for VQAs.
We employ VAns in the variational quantum eigensolver for condensed matter and quantum chemistry applications.
arXiv Detail & Related papers (2021-03-11T14:58:40Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.