Scalable Power Control/Beamforming in Heterogeneous Wireless Networks
with Graph Neural Networks
- URL: http://arxiv.org/abs/2104.05463v1
- Date: Mon, 12 Apr 2021 13:36:32 GMT
- Title: Scalable Power Control/Beamforming in Heterogeneous Wireless Networks
with Graph Neural Networks
- Authors: Xiaochen Zhang, Haitao Zhao, Jun Xiong, Li Zhou, Jibo Wei
- Abstract summary: We propose a novel unsupervised learning-based framework named heterogeneous interference graph neural network (HIGNN) to handle these challenges.
HIGNN is scalable to wireless networks of growing sizes with robust performance after trained on small-sized networks.
- Score: 6.631773993784724
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) has been widely used for efficient resource allocation
(RA) in wireless networks. Although superb performance is achieved on small and
simple networks, most existing ML-based approaches are confronted with
difficulties when heterogeneity occurs and network size expands. In this paper,
specifically focusing on power control/beamforming (PC/BF) in heterogeneous
device-to-device (D2D) networks, we propose a novel unsupervised learning-based
framework named heterogeneous interference graph neural network (HIGNN) to
handle these challenges. First, we characterize diversified link features and
interference relations with heterogeneous graphs. Then, HIGNN is proposed to
empower each link to obtain its individual transmission scheme after limited
information exchange with neighboring links. It is noteworthy that HIGNN is
scalable to wireless networks of growing sizes with robust performance after
trained on small-sized networks. Numerical results show that compared with
state-of-the-art benchmarks, HIGNN achieves much higher execution efficiency
while providing strong performance.
Related papers
- Learning Load Balancing with GNN in MPTCP-Enabled Heterogeneous Networks [13.178956651532213]
We propose a graph neural network (GNN)-based model to tackle the LB problem for MP TCP-enabled HetNets.
Compared to the conventional deep neural network (DNN), the proposed GNN-based model exhibits two key strengths.
arXiv Detail & Related papers (2024-10-22T15:49:53Z) - NetDiff: Deep Graph Denoising Diffusion for Ad Hoc Network Topology Generation [1.6768151308423371]
We introduce NetDiff, a graph denoising diffusion probabilistic architecture that generates wireless ad hoc network link topologies.
Our results show that the generated links are realistic, present structural properties similar to the dataset graphs', and require only minor corrections and verification steps to be operational.
arXiv Detail & Related papers (2024-10-09T15:39:49Z) - GNN-Based Joint Channel and Power Allocation in Heterogeneous Wireless Networks [9.031738020845586]
This article proposes a GNN-based algorithm to address the joint resource allocation problem in heterogeneous wireless networks.
Our proposed algorithm achieves satisfactory performance but with higher computational efficiency compared to traditional optimisation algorithms.
arXiv Detail & Related papers (2024-07-28T04:51:00Z) - Network Alignment with Transferable Graph Autoencoders [79.89704126746204]
We propose a novel graph autoencoder architecture designed to extract powerful and robust node embeddings.
We prove that the generated embeddings are associated with the eigenvalues and eigenvectors of the graphs.
Our proposed framework also leverages transfer learning and data augmentation to achieve efficient network alignment at a very large scale without retraining.
arXiv Detail & Related papers (2023-10-05T02:58:29Z) - Graph Neural Networks for Power Allocation in Wireless Networks with
Full Duplex Nodes [10.150768420975155]
Due to mutual interference between users, power allocation problems in wireless networks are often non-trivial.
Graph Graph neural networks (GNNs) have recently emerged as a promising approach tackling these problems and an approach exploits underlying topology of wireless networks.
arXiv Detail & Related papers (2023-03-27T10:59:09Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
The scale of mobile networks makes it challenging to optimize antenna parameters using manual intervention or hand-engineered strategies.
We propose a new multi-agent reinforcement learning algorithm to optimize mobile network configurations globally.
We empirically demonstrate the performance of the algorithm on an antenna tilt tuning problem and a joint tilt and power control problem in a simulated environment.
arXiv Detail & Related papers (2023-01-20T17:06:34Z) - Learning Cooperative Beamforming with Edge-Update Empowered Graph Neural
Networks [29.23937571816269]
We propose an edge-graph-neural-network (Edge-GNN) to learn the cooperative beamforming on the graph edges.
The proposed Edge-GNN achieves higher sum rate with much shorter computation time than state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-23T02:05:06Z) - DeHIN: A Decentralized Framework for Embedding Large-scale Heterogeneous
Information Networks [64.62314068155997]
We present textitDecentralized Embedding Framework for Heterogeneous Information Network (DeHIN) in this paper.
DeHIN presents a context preserving partition mechanism that innovatively formulates a large HIN as a hypergraph.
Our framework then adopts a decentralized strategy to efficiently partition HINs by adopting a tree-like pipeline.
arXiv Detail & Related papers (2022-01-08T04:08:36Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
This paper presents a machine learning strategy that tackles a distributed optimization task in a wireless network with an arbitrary number of randomly interconnected nodes.
We develop a flexible deep neural network formalism termed distributed message-passing neural network (DMPNN) with forward and backward computations independent of the network topology.
arXiv Detail & Related papers (2021-06-15T09:03:28Z) - Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks [78.65792427542672]
Dynamic Graph Network (DG-Net) is a complete directed acyclic graph, where the nodes represent convolutional blocks and the edges represent connection paths.
Instead of using the same path of the network, DG-Net aggregates features dynamically in each node, which allows the network to have more representation ability.
arXiv Detail & Related papers (2020-10-02T16:50:26Z) - Wireless Power Control via Counterfactual Optimization of Graph Neural
Networks [124.89036526192268]
We consider the problem of downlink power control in wireless networks, consisting of multiple transmitter-receiver pairs communicating over a single shared wireless medium.
To mitigate the interference among concurrent transmissions, we leverage the network topology to create a graph neural network architecture.
We then use an unsupervised primal-dual counterfactual optimization approach to learn optimal power allocation decisions.
arXiv Detail & Related papers (2020-02-17T07:54:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.