Learning Chebyshev Basis in Graph Convolutional Networks for
Skeleton-based Action Recognition
- URL: http://arxiv.org/abs/2104.05482v1
- Date: Mon, 12 Apr 2021 14:08:58 GMT
- Title: Learning Chebyshev Basis in Graph Convolutional Networks for
Skeleton-based Action Recognition
- Authors: Hichem Sahbi
- Abstract summary: Spectral graph convolutional networks (GCNs) are particular deep models which aim at extending neural networks to arbitrary irregular domains.
We introduce a novel spectral GCN that learns not only the usual convolutional parameters but also the Laplacian operators.
- Score: 14.924672048447338
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spectral graph convolutional networks (GCNs) are particular deep models which
aim at extending neural networks to arbitrary irregular domains. The principle
of these networks consists in projecting graph signals using the
eigen-decomposition of their Laplacians, then achieving filtering in the
spectral domain prior to back-project the resulting filtered signals onto the
input graph domain. However, the success of these operations is highly
dependent on the relevance of the used Laplacians which are mostly handcrafted
and this makes GCNs clearly sub-optimal. In this paper, we introduce a novel
spectral GCN that learns not only the usual convolutional parameters but also
the Laplacian operators. The latter are designed "end-to-end" as a part of a
recursive Chebyshev decomposition with the particularity of conveying both the
differential and the non-differential properties of the learned representations
-- with increasing order and discrimination power -- without overparametrizing
the trained GCNs. Extensive experiments, conducted on the challenging task of
skeleton-based action recognition, show the generalization ability and the
outperformance of our proposed Laplacian design w.r.t. different baselines
(built upon handcrafted and other learned Laplacians) as well as the related
work.
Related papers
- Neural Tangent Kernels Motivate Graph Neural Networks with
Cross-Covariance Graphs [94.44374472696272]
We investigate NTKs and alignment in the context of graph neural networks (GNNs)
Our results establish the theoretical guarantees on the optimality of the alignment for a two-layer GNN.
These guarantees are characterized by the graph shift operator being a function of the cross-covariance between the input and the output data.
arXiv Detail & Related papers (2023-10-16T19:54:21Z) - HoloNets: Spectral Convolutions do extend to Directed Graphs [59.851175771106625]
Conventional wisdom dictates that spectral convolutional networks may only be deployed on undirected graphs.
Here we show this traditional reliance on the graph Fourier transform to be superfluous.
We provide a frequency-response interpretation of newly developed filters, investigate the influence of the basis used to express filters and discuss the interplay with characteristic operators on which networks are based.
arXiv Detail & Related papers (2023-10-03T17:42:09Z) - Learnable Filters for Geometric Scattering Modules [64.03877398967282]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2022-08-15T22:30:07Z) - Tuning the Geometry of Graph Neural Networks [0.7614628596146599]
spatial graph convolution operators have been heralded as key to the success of Graph Neural Networks (GNNs)
We show that this aggregation operator is in fact tunable, and explicit regimes in which certain choices of operators -- and therefore, embedding geometries -- might be more appropriate.
arXiv Detail & Related papers (2022-07-12T23:28:03Z) - Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid
Scattering Networks [11.857894213975644]
We propose a hybrid graph neural network (GNN) framework that combines traditional GCN filters with band-pass filters defined via the geometric scattering transform.
Our theoretical results establish the complementary benefits of the scattering filters to leverage structural information from the graph, while our experiments show the benefits of our method on various learning tasks.
arXiv Detail & Related papers (2022-01-22T00:47:41Z) - Learning Connectivity with Graph Convolutional Networks for
Skeleton-based Action Recognition [14.924672048447338]
We introduce a novel framework for graph convolutional networks that learns the topological properties of graphs.
The design principle of our method is based on the optimization of a constrained objective function.
Experiments conducted on the challenging task of skeleton-based action recognition shows the superiority of the proposed method.
arXiv Detail & Related papers (2021-12-06T19:43:26Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
Spectral graph convolutional networks (SGCNs) have been attracting increasing attention in graph representation learning.
We propose a novel class of spectral graph convolutional networks that implement graph convolutions with adaptive graph wavelets.
arXiv Detail & Related papers (2021-08-03T17:57:53Z) - Action Recognition with Kernel-based Graph Convolutional Networks [14.924672048447338]
Learning graph convolutional networks (GCNs) aims at generalizing deep learning to arbitrary non-regular domains.
We introduce a novel GCN framework that achieves spatial graph convolution in a reproducing kernel Hilbert space (RKHS)
The particularity of our GCN model also resides in its ability to achieve convolutions without explicitly realigning nodes in the receptive fields of the learned graph filters with those of the input graphs.
arXiv Detail & Related papers (2020-12-28T11:02:51Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z) - Scattering GCN: Overcoming Oversmoothness in Graph Convolutional
Networks [0.0]
Graph convolutional networks (GCNs) have shown promising results in processing graph data by extracting structure-aware features.
Here, we propose to augment conventional GCNs with geometric scattering transforms and residual convolutions.
The former enables band-pass filtering of graph signals, thus alleviating the so-called oversmoothing often encountered in GCNs.
arXiv Detail & Related papers (2020-03-18T18:03:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.