Learning Connectivity with Graph Convolutional Networks for
Skeleton-based Action Recognition
- URL: http://arxiv.org/abs/2112.03328v1
- Date: Mon, 6 Dec 2021 19:43:26 GMT
- Title: Learning Connectivity with Graph Convolutional Networks for
Skeleton-based Action Recognition
- Authors: Hichem Sahbi
- Abstract summary: We introduce a novel framework for graph convolutional networks that learns the topological properties of graphs.
The design principle of our method is based on the optimization of a constrained objective function.
Experiments conducted on the challenging task of skeleton-based action recognition shows the superiority of the proposed method.
- Score: 14.924672048447338
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning graph convolutional networks (GCNs) is an emerging field which aims
at generalizing convolutional operations to arbitrary non-regular domains. In
particular, GCNs operating on spatial domains show superior performances
compared to spectral ones, however their success is highly dependent on how the
topology of input graphs is defined. In this paper, we introduce a novel
framework for graph convolutional networks that learns the topological
properties of graphs. The design principle of our method is based on the
optimization of a constrained objective function which learns not only the
usual convolutional parameters in GCNs but also a transformation basis that
conveys the most relevant topological relationships in these graphs.
Experiments conducted on the challenging task of skeleton-based action
recognition shows the superiority of the proposed method compared to
handcrafted graph design as well as the related work.
Related papers
- Weisfeiler and Lehman Go Paths: Learning Topological Features via Path Complexes [4.23480641508611]
Graph Neural Networks (GNNs) are theoretically bounded by the 1-Weisfeiler-Lehman test.
Our study presents a novel perspective by focusing on simple paths within graphs during the topological message-passing process.
arXiv Detail & Related papers (2023-08-13T19:45:20Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
Spectral graph convolutional networks (SGCNs) have been attracting increasing attention in graph representation learning.
We propose a novel class of spectral graph convolutional networks that implement graph convolutions with adaptive graph wavelets.
arXiv Detail & Related papers (2021-08-03T17:57:53Z) - Learning Chebyshev Basis in Graph Convolutional Networks for
Skeleton-based Action Recognition [14.924672048447338]
Spectral graph convolutional networks (GCNs) are particular deep models which aim at extending neural networks to arbitrary irregular domains.
We introduce a novel spectral GCN that learns not only the usual convolutional parameters but also the Laplacian operators.
arXiv Detail & Related papers (2021-04-12T14:08:58Z) - Skeleton-based Hand-Gesture Recognition with Lightweight Graph
Convolutional Networks [14.924672048447338]
Graph convolutional networks (GCNs) aim at extending deep learning to arbitrary irregular domains, such as graphs.
We introduce a novel method that learns the topology of input graphs as a part of GCN design.
Experiments conducted on the challenging task of skeleton-based hand-gesture recognition show the high effectiveness of the learned GCNs.
arXiv Detail & Related papers (2021-04-09T09:06:53Z) - Action Recognition with Kernel-based Graph Convolutional Networks [14.924672048447338]
Learning graph convolutional networks (GCNs) aims at generalizing deep learning to arbitrary non-regular domains.
We introduce a novel GCN framework that achieves spatial graph convolution in a reproducing kernel Hilbert space (RKHS)
The particularity of our GCN model also resides in its ability to achieve convolutions without explicitly realigning nodes in the receptive fields of the learned graph filters with those of the input graphs.
arXiv Detail & Related papers (2020-12-28T11:02:51Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z) - Knowledge Embedding Based Graph Convolutional Network [35.35776808660919]
This paper proposes a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN)
KE-GCN combines the power of Graph Convolutional Network (GCN) in graph-based belief propagation and the strengths of advanced knowledge embedding methods.
Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases.
arXiv Detail & Related papers (2020-06-12T17:12:51Z) - Geometrically Principled Connections in Graph Neural Networks [66.51286736506658]
We argue geometry should remain the primary driving force behind innovation in the emerging field of geometric deep learning.
We relate graph neural networks to widely successful computer graphics and data approximation models: radial basis functions (RBFs)
We introduce affine skip connections, a novel building block formed by combining a fully connected layer with any graph convolution operator.
arXiv Detail & Related papers (2020-04-06T13:25:46Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z) - Cross-GCN: Enhancing Graph Convolutional Network with $k$-Order Feature
Interactions [153.6357310444093]
Graph Convolutional Network (GCN) is an emerging technique that performs learning and reasoning on graph data.
We argue that existing designs of GCN forgo modeling cross features, making GCN less effective for tasks or data where cross features are important.
We design a new operator named Cross-feature Graph Convolution, which explicitly models the arbitrary-order cross features with complexity linear to feature dimension and order size.
arXiv Detail & Related papers (2020-03-05T13:05:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.