論文の概要: Domain Adaptive Monocular Depth Estimation With Semantic Information
- arxiv url: http://arxiv.org/abs/2104.05764v1
- Date: Mon, 12 Apr 2021 18:50:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-15 04:09:41.706096
- Title: Domain Adaptive Monocular Depth Estimation With Semantic Information
- Title(参考訳): 意味情報を用いたドメイン適応単眼深度推定
- Authors: Fei Lu, Hyeonwoo Yu, Jean Oh
- Abstract要約: ドメインギャップを狭めるためにセマンティック情報を活用した対比トレーニングモデルを提案する。
提案したコンパクトモデルは,複雑な最新モデルに匹敵する最先端性能を実現する。
- 参考スコア(独自算出の注目度): 13.387521845596149
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advent of deep learning has brought an impressive advance to monocular
depth estimation, e.g., supervised monocular depth estimation has been
thoroughly investigated. However, the large amount of the RGB-to-depth dataset
may not be always available since collecting accurate depth ground truth
according to the RGB image is a time-consuming and expensive task. Although the
network can be trained on an alternative dataset to overcome the dataset scale
problem, the trained model is hard to generalize to the target domain due to
the domain discrepancy. Adversarial domain alignment has demonstrated its
efficacy to mitigate the domain shift on simple image classification tasks in
previous works. However, traditional approaches hardly handle the conditional
alignment as they solely consider the feature map of the network. In this
paper, we propose an adversarial training model that leverages semantic
information to narrow the domain gap. Based on the experiments conducted on the
datasets for the monocular depth estimation task including KITTI and
Cityscapes, the proposed compact model achieves state-of-the-art performance
comparable to complex latest models and shows favorable results on boundaries
and objects at far distances.
- Abstract(参考訳): 深層学習の出現は単眼深度推定に印象的な進歩をもたらし、例えば教師付き単眼深度推定は徹底的に研究されている。
しかし、RGB画像に従って正確な深度基底の真理を収集することは時間と費用のかかる作業であるため、RGBから深度へのデータセットの大量利用は必ずしも不可能である。
ネットワークはデータセットスケールの問題に対処するために、別のデータセットでトレーニングすることができるが、トレーニングされたモデルは、ドメインの相違によりターゲットドメインに一般化するのは難しい。
敵対的ドメインアライメントは、以前の作品における単純な画像分類タスクのドメインシフトを軽減する効果を実証した。
しかしながら、従来のアプローチではネットワークの機能マップのみを考慮し、条件付きアライメントを扱うことはほとんどない。
本稿では,ドメイン間のギャップを狭めるために,意味情報を活用した対向学習モデルを提案する。
KITTIとCityscapesを含む単眼深度推定タスクのデータセットを用いて,提案したコンパクトモデルは,複雑な最新モデルに匹敵する最先端性能を達成し,遠隔地の境界や物体に対する良好な結果を示す。
関連論文リスト
- TanDepth: Leveraging Global DEMs for Metric Monocular Depth Estimation in UAVs [5.6168844664788855]
本研究は,推定時間における相対的推定値から計量深度値を求めるための,実践的なオンラインスケール回復手法であるTanDepthを提案する。
本手法は無人航空機(UAV)の用途に応用され,GDEM(Global Digital Elevation Models)のスパース計測をカメラビューに投影することで活用する。
推定深度マップから接地点を選択して、投影された基準点と相関するクラスシミュレーションフィルタへの適応を示す。
論文 参考訳(メタデータ) (2024-09-08T15:54:43Z) - Consistency Regularisation for Unsupervised Domain Adaptation in Monocular Depth Estimation [15.285720572043678]
整合性に基づく半教師付き学習問題として,単眼深度推定のための教師なし領域適応を定式化する。
複数の拡張ビューにまたがって一貫性を保ちながら、ソースドメイン上の予測を規則化するペアワイズ損失関数を導入する。
実験では, KITTI と NYUv2 の標準深度推定ベンチマークを用いて,最先端の結果を示す。
論文 参考訳(メタデータ) (2024-05-27T23:32:06Z) - Do More With What You Have: Transferring Depth-Scale from Labeled to Unlabeled Domains [43.16293941978469]
自己教師付き深度推定器は、ドメイン全体の絶対深度値と線形に相関する大規模予測をもたらす。
トレーニング前の2つのデータセットのフィールド・オブ・ビューの整合性は、両方のドメインに共通な線形関係をもたらすことを示す。
観測された特性を用いて、絶対深度ラベルを持つソースデータセットから、これらの測定を欠いた新しいターゲットデータセットへ、深度スケールを転送する。
論文 参考訳(メタデータ) (2023-03-14T07:07:34Z) - SC-DepthV3: Robust Self-supervised Monocular Depth Estimation for
Dynamic Scenes [58.89295356901823]
自己監督型単眼深度推定は静的な場面で顕著な結果を示した。
トレーニングネットワークのマルチビュー整合性の仮定に依存するが、動的オブジェクト領域に違反する。
単一画像の深度を事前に生成するための,外部トレーニング付き単眼深度推定モデルを提案する。
我々のモデルは、高度にダイナミックなシーンのモノクロビデオからトレーニングしても、シャープで正確な深度マップを予測できる。
論文 参考訳(メタデータ) (2022-11-07T16:17:47Z) - Occlusion-Aware Self-Supervised Monocular 6D Object Pose Estimation [88.8963330073454]
自己教師付き学習による新しい単眼6次元ポーズ推定手法を提案する。
ノイズの多い学生のトレーニングと差別化可能なレンダリングの現在の傾向を活用して、モデルをさらに自己監督する。
提案する自己超越法は,合成データに依存する他の方法よりも優れている。
論文 参考訳(メタデータ) (2022-03-19T15:12:06Z) - Occlusion-aware Unsupervised Learning of Depth from 4-D Light Fields [50.435129905215284]
4次元光場処理と解析のための教師なし学習に基づく深度推定法を提案する。
光場データの特異な幾何学構造に関する基礎知識に基づいて,光場ビューのサブセット間の角度コヒーレンスを探索し,深度マップを推定する。
提案手法は,従来の手法と同等の精度で計算コストを低減した深度マップを作成できる。
論文 参考訳(メタデータ) (2021-06-06T06:19:50Z) - Domain Adaptive Semantic Segmentation with Self-Supervised Depth
Estimation [84.34227665232281]
セマンティックセグメンテーションのためのドメイン適応は、ソースとターゲットドメイン間の分散シフトの存在下でモデルのパフォーマンスを向上させることを目的とする。
ドメイン間のギャップを埋めるために、両ドメインで利用可能な自己教師付き深さ推定からのガイダンスを活用します。
提案手法のベンチマークタスクSYNTHIA-to-CityscapesとGTA-to-Cityscapesの有効性を実証する。
論文 参考訳(メタデータ) (2021-04-28T07:47:36Z) - Learning a Domain-Agnostic Visual Representation for Autonomous Driving
via Contrastive Loss [25.798361683744684]
ドメイン認識コントラスト学習(Domain-Agnostic Contrastive Learning、DACL)は、2段階の非監視ドメイン適応フレームワークである。
提案手法は,従来の最新手法に比べ,単眼深度推定作業における性能向上を実現した。
論文 参考訳(メタデータ) (2021-03-10T07:06:03Z) - DESC: Domain Adaptation for Depth Estimation via Semantic Consistency [24.13837264978472]
単眼深度推定モデルの訓練のための領域適応手法を提案する。
セマンティックな予測と低レベルのエッジ機能を活用することで、ドメインギャップを埋める。
本手法は,単眼深度推定のための標準領域適応ベンチマークを用いて評価する。
論文 参考訳(メタデータ) (2020-09-03T10:54:05Z) - DeFeat-Net: General Monocular Depth via Simultaneous Unsupervised
Representation Learning [65.94499390875046]
DeFeat-Netは、クロスドメインの高密度な特徴表現を同時に学習するアプローチである。
提案手法は, 誤差対策を全て10%程度減らすことで, 最先端技術よりも優れる。
論文 参考訳(メタデータ) (2020-03-30T13:10:32Z) - Single Image Depth Estimation Trained via Depth from Defocus Cues [105.67073923825842]
単一のRGB画像から深度を推定することはコンピュータビジョンの基本的な課題である。
この作業では、異なる視点ではなく、フォーカスキューからの奥行きに依存しています。
我々は,KITTIとMake3Dデータセットの教師あり手法と同等な結果を提示し,教師なし学習手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-01-14T20:22:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。