論文の概要: Do More With What You Have: Transferring Depth-Scale from Labeled to Unlabeled Domains
- arxiv url: http://arxiv.org/abs/2303.07662v3
- Date: Mon, 15 Apr 2024 08:37:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 00:26:56.178714
- Title: Do More With What You Have: Transferring Depth-Scale from Labeled to Unlabeled Domains
- Title(参考訳): ラベル付きドメインからラベルなしドメインへの深さスケールの移行
- Authors: Alexandra Dana, Nadav Carmel, Amit Shomer, Ofer Manela, Tomer Peleg,
- Abstract要約: 自己教師付き深度推定器は、ドメイン全体の絶対深度値と線形に相関する大規模予測をもたらす。
トレーニング前の2つのデータセットのフィールド・オブ・ビューの整合性は、両方のドメインに共通な線形関係をもたらすことを示す。
観測された特性を用いて、絶対深度ラベルを持つソースデータセットから、これらの測定を欠いた新しいターゲットデータセットへ、深度スケールを転送する。
- 参考スコア(独自算出の注目度): 43.16293941978469
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Transferring the absolute depth prediction capabilities of an estimator to a new domain is a task with significant real-world applications. This task is specifically challenging when images from the new domain are collected without ground-truth depth measurements, and possibly with sensors of different intrinsics. To overcome such limitations, a recent zero-shot solution was trained on an extensive training dataset and encoded the various camera intrinsics. Other solutions generated synthetic data with depth labels that matched the intrinsics of the new target data to enable depth-scale transfer between the domains. In this work we present an alternative solution that can utilize any existing synthetic or real dataset, that has a small number of images annotated with ground truth depth labels. Specifically, we show that self-supervised depth estimators result in up-to-scale predictions that are linearly correlated to their absolute depth values across the domain, a property that we model in this work using a single scalar. In addition, aligning the field-of-view of two datasets prior to training, results in a common linear relationship for both domains. We use this observed property to transfer the depth-scale from source datasets that have absolute depth labels to new target datasets that lack these measurements, enabling absolute depth predictions in the target domain. The suggested method was successfully demonstrated on the KITTI, DDAD and nuScenes datasets, while using other existing real or synthetic source datasets, that have a different field-of-view, other image style or structural content, achieving comparable or better accuracy than other existing methods that do not use target ground-truth depths.
- Abstract(参考訳): 推定器の絶対深度予測能力を新しい領域に転送することは、重要な現実世界のアプリケーションを扱うタスクである。
このタスクは、新しい領域の画像が地上の深度測定なしで収集される場合や、おそらく異なる固有のセンサーで収集される場合、特に困難である。
このような制限を克服するため、最近のゼロショットソリューションは広範なトレーニングデータセットに基づいてトレーニングされ、さまざまなカメラ固有の機能をエンコードした。
他のソリューションは、ドメイン間の深度スケールの転送を可能にするために、新しいターゲットデータの本質と一致する深さラベルを持つ合成データを生成した。
本研究では,地上の真理深度ラベルにアノテートされた少数の画像を持つ既存の合成データや実データを利用する方法を提案する。
具体的には、自己教師付き深さ推定器が、ドメイン全体にわたる絶対深度値と線形に相関する、最大スケールの予測をもたらすことを示し、これは単一のスカラーを用いて、本研究でモデル化した特性である。
さらに、トレーニング前に2つのデータセットのフィールド・オブ・ビューを整列させることで、両方のドメインに共通の線形関係が生まれる。
我々は、この観測された特性を用いて、絶対深度ラベルを持つソースデータセットから、これらの測定を欠いた新しいターゲットデータセットに転送し、ターゲット領域における絶対深度予測を可能にする。
提案手法は,KITTI,DDAD,nuScenesの各データセットにおいて,他のフィールド・オブ・ビュー,他の画像スタイル,構造的内容を持つ既存の実あるいは合成ソースデータセットを用いて,対象の地層深度を使用しない他の既存手法と同等あるいは優れた精度を達成できることを示す。
関連論文リスト
- MICDrop: Masking Image and Depth Features via Complementary Dropout for Domain-Adaptive Semantic Segmentation [155.0797148367653]
Unsupervised Domain Adaptation (UDA)は、ラベル付きソースドメインとラベルなしターゲットドメインの間のドメインギャップを埋めるタスクである。
深度不連続性はしばしばセグメンテーション境界と一致するため、幾何学的情報、すなわち深度予測を活用することを提案する。
提案手法は, 様々な UDA 手法にプラグインし, 標準 UDA ベンチマークで連続的に結果を改善することができることを示す。
論文 参考訳(メタデータ) (2024-08-29T12:15:10Z) - Compositional Semantic Mix for Domain Adaptation in Point Cloud
Segmentation [65.78246406460305]
合成意味混合は、ポイントクラウドセグメンテーションのための最初の教師なし領域適応技術である。
本稿では、ソースドメイン(例えば合成)からの点雲とターゲットドメイン(例えば実世界)からの点雲を同時に処理できる2分岐対称ネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-08-28T14:43:36Z) - Knowledge Combination to Learn Rotated Detection Without Rotated
Annotation [53.439096583978504]
回転バウンディングボックスは、伸長したオブジェクトの出力あいまいさを劇的に減少させる。
この効果にもかかわらず、回転検出器は広く使われていない。
本稿では,モデルが正確な回転ボックスを予測できるフレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-05T03:07:36Z) - 3D-PL: Domain Adaptive Depth Estimation with 3D-aware Pseudo-Labeling [37.315964084413174]
我々は,実際のデータから信頼された疑似基底真理を生成して,直接の監視を行うドメイン適応フレームワークを開発する。
具体的には,(1)画像が同一内容の異なるスタイルのときの深度予測の一貫性を計測し,(2)3次元空間における深度値の完備化を学習するポイントクラウドコンプリートネットワークを介して,擬似ラベルを認識させることにより,擬似ラベルの2つのメカニズムを提案する。
論文 参考訳(メタデータ) (2022-09-19T17:54:17Z) - Ranking Distance Calibration for Cross-Domain Few-Shot Learning [91.22458739205766]
数ショット学習の最近の進歩は、より現実的なクロスドメイン設定を促進する。
ドメインギャップとソースとターゲットデータセット間のラベル空間の相違により、共有される知識は極めて限られている。
我々は,タスク内の相互k-アネレスト近傍を発見することで,目標距離行列の校正を行う。
論文 参考訳(メタデータ) (2021-12-01T03:36:58Z) - Domain Adaptation for Real-World Single View 3D Reconstruction [1.611271868398988]
教師なしのドメイン適応は、ラベル付き合成ソースドメインからラベルなしの実際のターゲットドメインに知識を転送するために使用することができる。
本稿では,3次元モデルでは対象のドメインデータが教師されないが,クラスラベルでは教師されないという事実を生かして,新しいアーキテクチャを提案する。
その結果はShapeNetをソースドメインとして、Object Domain Suite(ODDS)データセット内のドメインをターゲットとして実行されます。
論文 参考訳(メタデータ) (2021-08-24T22:02:27Z) - Domain Adaptive Monocular Depth Estimation With Semantic Information [13.387521845596149]
ドメインギャップを狭めるためにセマンティック情報を活用した対比トレーニングモデルを提案する。
提案したコンパクトモデルは,複雑な最新モデルに匹敵する最先端性能を実現する。
論文 参考訳(メタデータ) (2021-04-12T18:50:41Z) - Flexible deep transfer learning by separate feature embeddings and
manifold alignment [0.0]
オブジェクト認識は、業界と防衛において重要な存在である。
残念ながら、既存のラベル付きデータセットでトレーニングされたアルゴリズムは、データ分布が一致しないため、直接新しいデータに一般化しない。
本稿では,各領域の特徴抽出を個別に学習することで,この制限を克服する新しいディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-12-22T19:24:44Z) - Unsupervised Metric Relocalization Using Transform Consistency Loss [66.19479868638925]
メートル法再ローカライズを行うためのトレーニングネットワークは、従来、正確な画像対応が必要である。
地図内のクエリ画像のローカライズは、登録に使用される参照画像に関係なく、同じ絶対的なポーズを与えるべきである。
提案手法は, 限られた地下構造情報が得られる場合に, 他の教師あり手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-01T19:24:27Z) - Synthetic-to-Real Domain Adaptation for Lane Detection [5.811502603310248]
我々は、ラベルなしまたは部分的にラベル付けされたターゲットドメインデータとともに、豊富でランダムに生成された合成データからの学習を探索する。
これは、非現実的な合成領域で学んだモデルを実画像に適応させることの難しさを浮き彫りにする。
対象のドメインデータに適応するために、特定の画像と一致しない合成ラベルを用いる、新しいオートエンコーダベースのアプローチを開発する。
論文 参考訳(メタデータ) (2020-07-08T10:54:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。