On the adaptation of recurrent neural networks for system identification
- URL: http://arxiv.org/abs/2201.08660v1
- Date: Fri, 21 Jan 2022 12:04:17 GMT
- Title: On the adaptation of recurrent neural networks for system identification
- Authors: Marco Forgione, Aneri Muni, Dario Piga, Marco Gallieri
- Abstract summary: This paper presents a transfer learning approach which enables fast and efficient adaptation of Recurrent Neural Network (RNN) models of dynamical systems.
The system dynamics are then assumed to change, leading to an unacceptable degradation of the nominal model performance on the perturbed system.
To cope with the mismatch, the model is augmented with an additive correction term trained on fresh data from the new dynamic regime.
- Score: 2.5234156040689237
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a transfer learning approach which enables fast and
efficient adaptation of Recurrent Neural Network (RNN) models of dynamical
systems. A nominal RNN model is first identified using available measurements.
The system dynamics are then assumed to change, leading to an unacceptable
degradation of the nominal model performance on the perturbed system. To cope
with the mismatch, the model is augmented with an additive correction term
trained on fresh data from the new dynamic regime. The correction term is
learned through a Jacobian Feature Regression (JFR) method defined in terms of
the features spanned by the model's Jacobian with respect to its nominal
parameters. A non-parametric view of the approach is also proposed, which
extends recent work on Gaussian Process (GP) with Neural Tangent Kernel
(NTK-GP) to the RNN case (RNTK-GP). This can be more efficient for very large
networks or when only few data points are available. Implementation aspects for
fast and efficient computation of the correction term, as well as the initial
state estimation for the RNN model are described. Numerical examples show the
effectiveness of the proposed methodology in presence of significant system
variations.
Related papers
- Adaptive Anomaly Detection in Network Flows with Low-Rank Tensor Decompositions and Deep Unrolling [9.20186865054847]
Anomaly detection (AD) is increasingly recognized as a key component for ensuring the resilience of future communication systems.
This work considers AD in network flows using incomplete measurements.
We propose a novel block-successive convex approximation algorithm based on a regularized model-fitting objective.
Inspired by Bayesian approaches, we extend the model architecture to perform online adaptation to per-flow and per-time-step statistics.
arXiv Detail & Related papers (2024-09-17T19:59:57Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Convolutional Dictionary Learning by End-To-End Training of Iterative
Neural Networks [3.6280929178575994]
In this work, we construct an INN which can be used as a supervised and physics-informed online convolutional dictionary learning algorithm.
We show that the proposed INN improves over two conventional model-agnostic training methods and yields competitive results also compared to a deep INN.
arXiv Detail & Related papers (2022-06-09T12:15:38Z) - Orthogonal Stochastic Configuration Networks with Adaptive Construction
Parameter for Data Analytics [6.940097162264939]
randomness makes SCNs more likely to generate approximate linear correlative nodes that are redundant and low quality.
In light of a fundamental principle in machine learning, that is, a model with fewer parameters holds improved generalization.
This paper proposes orthogonal SCN, termed OSCN, to filtrate out the low-quality hidden nodes for network structure reduction.
arXiv Detail & Related papers (2022-05-26T07:07:26Z) - On feedforward control using physics-guided neural networks: Training
cost regularization and optimized initialization [0.0]
Performance of model-based feedforward controllers is typically limited by the accuracy of the inverse system dynamics model.
This paper proposes a regularization method via identified physical parameters.
It is validated on a real-life industrial linear motor, where it delivers better tracking accuracy and extrapolation.
arXiv Detail & Related papers (2022-01-28T12:51:25Z) - A novel Deep Neural Network architecture for non-linear system
identification [78.69776924618505]
We present a novel Deep Neural Network (DNN) architecture for non-linear system identification.
Inspired by fading memory systems, we introduce inductive bias (on the architecture) and regularization (on the loss function)
This architecture allows for automatic complexity selection based solely on available data.
arXiv Detail & Related papers (2021-06-06T10:06:07Z) - Contextual HyperNetworks for Novel Feature Adaptation [43.49619456740745]
Contextual HyperNetwork (CHN) generates parameters for extending the base model to a new feature.
At prediction time, the CHN requires only a single forward pass through a neural network, yielding a significant speed-up.
We show that this system obtains improved few-shot learning performance for novel features over existing imputation and meta-learning baselines.
arXiv Detail & Related papers (2021-04-12T23:19:49Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.