SPARK: SPAcecraft Recognition leveraging Knowledge of Space Environment
- URL: http://arxiv.org/abs/2104.05978v2
- Date: Wed, 14 Apr 2021 01:58:18 GMT
- Title: SPARK: SPAcecraft Recognition leveraging Knowledge of Space Environment
- Authors: Mohamed Adel Musallam, Kassem Al Ismaeil, Oyebade Oyedotun, Marcos
Damian Perez, Michel Poucet, Djamila Aouada
- Abstract summary: This paper proposes the SPARK dataset as a new unique space object multi-modal image dataset.
The SPARK dataset has been generated under a realistic space simulation environment.
It provides about 150k images per modality, RGB and depth, and 11 classes for spacecrafts and debris.
- Score: 10.068428438297563
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper proposes the SPARK dataset as a new unique space object
multi-modal image dataset. Image-based object recognition is an important
component of Space Situational Awareness, especially for applications such as
on-orbit servicing, active debris removal, and satellite formation. However,
the lack of sufficient annotated space data has limited research efforts in
developing data-driven spacecraft recognition approaches. The SPARK dataset has
been generated under a realistic space simulation environment, with a large
diversity in sensing conditions for different orbital scenarios. It provides
about 150k images per modality, RGB and depth, and 11 classes for spacecrafts
and debris. This dataset offers an opportunity to benchmark and further develop
object recognition, classification and detection algorithms, as well as
multi-modal RGB-Depth approaches under space sensing conditions. Preliminary
experimental evaluation validates the relevance of the data, and highlights
interesting challenging scenarios specific to the space environment.
Related papers
- SPIN: Spacecraft Imagery for Navigation [8.155713824482767]
We present SPIN, an open-source realistic spacecraft image generation tool for relative navigation between two spacecrafts.
SPIN provides a wide variety of ground-truth data and allows researchers to employ custom 3D models of satellites.
We show a %50 average error reduction in common testbed data that simulates realistic space conditions.
arXiv Detail & Related papers (2024-06-11T17:35:39Z) - RaSim: A Range-aware High-fidelity RGB-D Data Simulation Pipeline for Real-world Applications [55.24463002889]
We focus on depth data synthesis and develop a range-aware RGB-D data simulation pipeline (RaSim)
In particular, high-fidelity depth data is generated by imitating the imaging principle of real-world sensors.
RaSim can be directly applied to real-world scenarios without any finetuning and excel at downstream RGB-D perception tasks.
arXiv Detail & Related papers (2024-04-05T08:52:32Z) - SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection [79.23689506129733]
We establish a new benchmark dataset and an open-source method for large-scale SAR object detection.
Our dataset, SARDet-100K, is a result of intense surveying, collecting, and standardizing 10 existing SAR detection datasets.
To the best of our knowledge, SARDet-100K is the first COCO-level large-scale multi-class SAR object detection dataset ever created.
arXiv Detail & Related papers (2024-03-11T09:20:40Z) - Segment Any Events via Weighted Adaptation of Pivotal Tokens [85.39087004253163]
This paper focuses on the nuanced challenge of tailoring the Segment Anything Models (SAMs) for integration with event data.
We introduce a multi-scale feature distillation methodology to optimize the alignment of token embeddings originating from event data with their RGB image counterparts.
arXiv Detail & Related papers (2023-12-24T12:47:08Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
This paper introduces a multimodal dataset from the harsh and unstructured underground environment with aerosol particles.
It contains synchronized raw data measurements from all onboard sensors in Robot Operating System (ROS) format.
The focus of this paper is not only to capture both temporal and spatial data diversities but also to present the impact of harsh conditions on captured data.
arXiv Detail & Related papers (2023-04-27T20:21:18Z) - Synthetic Data for Semantic Image Segmentation of Imagery of Unmanned
Spacecraft [0.0]
Images of spacecraft photographed from other spacecraft operating in outer space are difficult to come by.
We propose a method for generating synthetic image data labelled for semantic segmentation, generalizable to other tasks.
We present a strong benchmark result on these synthetic data, suggesting that it is feasible to train well-performing image segmentation models for this task.
arXiv Detail & Related papers (2022-11-22T01:30:40Z) - SpectraNet: Learned Recognition of Artificial Satellites From High
Contrast Spectroscopic Imagery [0.0]
Current methods for extracting object identification from observed data require spatially resolved imagery which limits identification to objects in low earth orbits.
Most artificial satellites, however, operate in geostationary orbits at distances which prohibit ground based observatories from resolving spatial information.
This paper demonstrates an object identification solution leveraging modified residual convolutional neural networks to map distance-invariant data to object identity.
arXiv Detail & Related papers (2022-01-10T19:51:00Z) - SPEED+: Next Generation Dataset for Spacecraft Pose Estimation across
Domain Gap [0.9449650062296824]
This paper introduces SPEED+: the next generation spacecraft pose estimation dataset with specific emphasis on domain gap.
SPEED+ includes 9,531 simulated images of a spacecraft mockup model captured from the Testbed for Rendezvous and Optical Navigation (TRON) facility.
TRON is a first-of-a-kind robotic testbed capable of capturing an arbitrary number of target images with accurate and maximally diverse pose labels.
arXiv Detail & Related papers (2021-10-06T23:22:24Z) - A Spacecraft Dataset for Detection, Segmentation and Parts Recognition [42.27081423489484]
In this paper, we release a dataset for spacecraft detection, instance segmentation and part recognition.
The main contribution of this work is the development of the dataset using images of space stations and satellites.
We also provide evaluations with state-of-the-art methods in object detection and instance segmentation as a benchmark for the dataset.
arXiv Detail & Related papers (2021-06-15T14:36:56Z) - Low-Rank Subspaces in GANs [101.48350547067628]
This work introduces low-rank subspaces that enable more precise control of GAN generation.
LowRankGAN is able to find the low-dimensional representation of attribute manifold.
Experiments on state-of-the-art GAN models (including StyleGAN2 and BigGAN) trained on various datasets demonstrate the effectiveness of our LowRankGAN.
arXiv Detail & Related papers (2021-06-08T16:16:32Z) - Evidential Sparsification of Multimodal Latent Spaces in Conditional
Variational Autoencoders [63.46738617561255]
We consider the problem of sparsifying the discrete latent space of a trained conditional variational autoencoder.
We use evidential theory to identify the latent classes that receive direct evidence from a particular input condition and filter out those that do not.
Experiments on diverse tasks, such as image generation and human behavior prediction, demonstrate the effectiveness of our proposed technique.
arXiv Detail & Related papers (2020-10-19T01:27:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.