RaSim: A Range-aware High-fidelity RGB-D Data Simulation Pipeline for Real-world Applications
- URL: http://arxiv.org/abs/2404.03962v1
- Date: Fri, 5 Apr 2024 08:52:32 GMT
- Title: RaSim: A Range-aware High-fidelity RGB-D Data Simulation Pipeline for Real-world Applications
- Authors: Xingyu Liu, Chenyangguang Zhang, Gu Wang, Ruida Zhang, Xiangyang Ji,
- Abstract summary: We focus on depth data synthesis and develop a range-aware RGB-D data simulation pipeline (RaSim)
In particular, high-fidelity depth data is generated by imitating the imaging principle of real-world sensors.
RaSim can be directly applied to real-world scenarios without any finetuning and excel at downstream RGB-D perception tasks.
- Score: 55.24463002889
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In robotic vision, a de-facto paradigm is to learn in simulated environments and then transfer to real-world applications, which poses an essential challenge in bridging the sim-to-real domain gap. While mainstream works tackle this problem in the RGB domain, we focus on depth data synthesis and develop a range-aware RGB-D data simulation pipeline (RaSim). In particular, high-fidelity depth data is generated by imitating the imaging principle of real-world sensors. A range-aware rendering strategy is further introduced to enrich data diversity. Extensive experiments show that models trained with RaSim can be directly applied to real-world scenarios without any finetuning and excel at downstream RGB-D perception tasks.
Related papers
- Close the Sim2real Gap via Physically-based Structured Light Synthetic Data Simulation [16.69742672616517]
We introduce an innovative structured light simulation system, generating both RGB and physically realistic depth images.
We create an RGBD dataset tailored for robotic industrial grasping scenarios.
By reducing the sim2real gap and enhancing deep learning training, we facilitate the application of deep learning models in industrial settings.
arXiv Detail & Related papers (2024-07-17T09:57:14Z) - Towards Realistic Data Generation for Real-World Super-Resolution [58.88039242455039]
RealDGen is an unsupervised learning data generation framework designed for real-world super-resolution.
We develop content and degradation extraction strategies, which are integrated into a novel content-degradation decoupled diffusion model.
Experiments demonstrate that RealDGen excels in generating large-scale, high-quality paired data that mirrors real-world degradations.
arXiv Detail & Related papers (2024-06-11T13:34:57Z) - Augmented Reality based Simulated Data (ARSim) with multi-view consistency for AV perception networks [47.07188762367792]
We present ARSim, a framework designed to enhance real multi-view image data with 3D synthetic objects of interest.
We construct a simplified virtual scene using real data and strategically place 3D synthetic assets within it.
The resulting augmented multi-view consistent dataset is used to train a multi-camera perception network for autonomous vehicles.
arXiv Detail & Related papers (2024-03-22T17:49:11Z) - Sim-to-Real Grasp Detection with Global-to-Local RGB-D Adaptation [19.384129689848294]
This paper focuses on the sim-to-real issue of RGB-D grasp detection and formulates it as a domain adaptation problem.
We present a global-to-local method to address hybrid domain gaps in RGB and depth data and insufficient multi-modal feature alignment.
arXiv Detail & Related papers (2024-03-18T06:42:38Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
We introduce a pipeline for data-driven simulation of a realistic LiDAR sensor.
We show that our model can learn to encode realistic effects such as dropped points on transparent surfaces.
We use our technique to learn models of two distinct LiDAR sensors and use them to improve simulated LiDAR data accordingly.
arXiv Detail & Related papers (2022-09-22T13:12:54Z) - A Lightweight Machine Learning Pipeline for LiDAR-simulation [8.18203294574182]
We propose a lightweight approach for more realistic LiDAR simulation.
The central idea is to cast the simulation into an image-to-image translation problem.
This strategy enables to skip the sensor-specific, expensive and complex LiDAR physics simulation.
arXiv Detail & Related papers (2022-08-05T12:45:53Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z) - Synergistic saliency and depth prediction for RGB-D saliency detection [76.27406945671379]
Existing RGB-D saliency datasets are small, which may lead to overfitting and limited generalization for diverse scenarios.
We propose a semi-supervised system for RGB-D saliency detection that can be trained on smaller RGB-D saliency datasets without saliency ground truth.
arXiv Detail & Related papers (2020-07-03T14:24:41Z) - Transferable Active Grasping and Real Embodied Dataset [48.887567134129306]
We show how to search for feasible viewpoints for grasping by the use of hand-mounted RGB-D cameras.
A practical 3-stage transferable active grasping pipeline is developed, that is adaptive to unseen clutter scenes.
In our pipeline, we propose a novel mask-guided reward to overcome the sparse reward issue in grasping and ensure category-irrelevant behavior.
arXiv Detail & Related papers (2020-04-28T08:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.