論文の概要: Semiring Primitives for Sparse Neighborhood Methods on the GPU
- arxiv url: http://arxiv.org/abs/2104.06357v1
- Date: Tue, 13 Apr 2021 17:05:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-14 16:37:15.594288
- Title: Semiring Primitives for Sparse Neighborhood Methods on the GPU
- Title(参考訳): GPUのスパース近傍法におけるセミリングプリミティブ
- Authors: Corey J. Nolet, Divye Gala, Edward Raff, Joe Eaton, Brad Rees, John
Zedlewski, Tim Oates
- Abstract要約: スパース半環プリミティブは、幅広い臨界距離測度をサポートするのに十分な柔軟性を持つことができる。
このプリミティブは、多くの近隣情報検索と機械学習アルゴリズムがスパース入力を受け付けるための基礎的なコンポーネントである。
- 参考スコア(独自算出の注目度): 16.56995698312561
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-performance primitives for mathematical operations on sparse vectors
must deal with the challenges of skewed degree distributions and limits on
memory consumption that are typically not issues in dense operations. We
demonstrate that a sparse semiring primitive can be flexible enough to support
a wide range of critical distance measures while maintaining performance and
memory efficiency on the GPU. We further show that this primitive is a
foundational component for enabling many neighborhood-based information
retrieval and machine learning algorithms to accept sparse input. To our
knowledge, this is the first work aiming to unify the computation of several
critical distance measures on the GPU under a single flexible design paradigm
and we hope that it provides a good baseline for future research in this area.
Our implementation is fully open source and publicly available at
https://github.com/rapidsai/cuml.
- Abstract(参考訳): スパースベクトル上の数学的演算のための高性能プリミティブは、歪んだ次数分布の課題と、通常密接な演算では問題にならないメモリ消費の制限を扱う必要がある。
スパースセミリングプリミティブは、gpu上での性能とメモリ効率を維持しつつ、広範囲の臨界距離計測をサポートするのに十分な柔軟性を持つことが実証される。
さらに,このプリミティブは,周辺情報検索や機械学習アルゴリズムがスパース入力を受け付けるための基礎的なコンポーネントであることを示す。
われわれの知る限り、これは単一のフレキシブルな設計パラダイムの下でGPU上のいくつかの臨界距離測定の計算を統合することを目的とした最初の研究であり、この分野における将来の研究のための良いベースラインを提供することを期待している。
実装は完全にオープンソースで、https://github.com/rapidsai/cumlで公開されています。
関連論文リスト
- Learning the Geodesic Embedding with Graph Neural Networks [22.49236293942187]
離散多面体表面上の2つの任意の点間の近似測地距離を計算するための学習ベース手法であるGeGnnを提案する。
私たちのキーとなるアイデアは、グラフニューラルネットワークをトレーニングして、入力メッシュを高次元の埋め込み空間に埋め込むことです。
本研究では,ShapeNetにおける提案手法の有効性と有効性を検証するとともに,既存の手法よりも桁違いに高速であることを示す。
論文 参考訳(メタデータ) (2023-09-11T16:54:34Z) - Providing Meaningful Data Summarizations Using Examplar-based Clustering
in Industry 4.0 [67.80123919697971]
我々は,従来のCPUアルゴリズムと比較して,一精度で最大72倍,半精度で最大452倍の高速化を実現していることを示す。
提案アルゴリズムは射出成形プロセスから得られた実世界のデータに適用し, 得られたサマリーが, コスト削減と不良部品製造の削減のために, この特定のプロセスのステアリングにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2021-05-25T15:55:14Z) - Towards Efficient Scene Understanding via Squeeze Reasoning [71.1139549949694]
我々はSqueeze Reasoningと呼ばれる新しいフレームワークを提案する。
空間地図上の情報を伝播するのではなく、まず入力特徴をチャネルワイドなグローバルベクトルに絞ることを学ぶ。
提案手法はエンドツーエンドのトレーニングブロックとしてモジュール化可能であり,既存のネットワークに簡単に接続可能であることを示す。
論文 参考訳(メタデータ) (2020-11-06T12:17:01Z) - Online Dense Subgraph Discovery via Blurred-Graph Feedback [87.9850024070244]
我々は高密度サブグラフ発見のための新しい学習問題を導入する。
まず,確率の高いほぼ最適解を求めるエッジ時間アルゴリズムを提案する。
そして、理論的保証のあるよりスケーラブルなアルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-06-24T11:37:33Z) - Kernel methods through the roof: handling billions of points efficiently [94.31450736250918]
カーネル法は、非パラメトリック学習に対するエレガントで原則化されたアプローチを提供するが、今のところ大規模な問題ではほとんど利用できない。
最近の進歩は、最適化、数値線形代数、ランダム射影など、多くのアルゴリズム的アイデアの利点を示している。
ここでは、これらの取り組みをさらに進めて、GPUハードウェアを最大限に活用する解決器を開発し、テストする。
論文 参考訳(メタデータ) (2020-06-18T08:16:25Z) - Heterogeneous CPU+GPU Stochastic Gradient Descent Algorithms [1.3249453757295084]
ヘテロジニアスCPU+GPUアーキテクチャの深層学習のためのトレーニングアルゴリズムについて検討する。
私たちの2倍の目標 -- 収束率と資源利用を同時に最大化する -- は、この問題を難しくします。
これらのアルゴリズムの実装は,複数の実データセットよりも高速な収束と資源利用の両立を実現していることを示す。
論文 参考訳(メタデータ) (2020-04-19T05:21:20Z) - MPLP++: Fast, Parallel Dual Block-Coordinate Ascent for Dense Graphical
Models [96.1052289276254]
この研究は、人気のあるDual Block-Coordinate Ascent原則に基づく新しいMAP-solverを導入している。
驚いたことに、性能の低い解法に小さな変更を加えることで、既存の解法を大きなマージンで大幅に上回る新しい解法MPLP++を導出します。
論文 参考訳(メタデータ) (2020-04-16T16:20:53Z) - Spatial Pyramid Based Graph Reasoning for Semantic Segmentation [67.47159595239798]
セマンティックセグメンテーションタスクにグラフ畳み込みを適用し、改良されたラプラシアンを提案する。
グラフ推論は、空間ピラミッドとして構成された元の特徴空間で直接実行される。
計算とメモリのオーバーヘッドの利点で同等のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2020-03-23T12:28:07Z) - FarSee-Net: Real-Time Semantic Segmentation by Efficient Multi-scale
Context Aggregation and Feature Space Super-resolution [14.226301825772174]
Cascaded Factorized Atrous Space Pyramid Pooling (CF-ASPP) と呼ばれる新しい効率的なモジュールについて紹介する。
これは畳み込みニューラルネットワーク(CNN)のための軽量なカスケード構造であり、コンテキスト情報を効率的に活用する。
我々は1枚のNivida Titan X (Maxwell) GPUカードでCityscapesテストセットの84fpsで68.4% mIoUを達成した。
論文 参考訳(メタデータ) (2020-03-09T03:53:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。