論文の概要: QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question
Answering
- arxiv url: http://arxiv.org/abs/2104.06378v1
- Date: Tue, 13 Apr 2021 17:32:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-14 15:51:26.594173
- Title: QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question
Answering
- Title(参考訳): QA-GNN:質問応答のための言語モデルと知識グラフ
- Authors: Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang and Jure
Leskovec
- Abstract要約: 学習済み言語モデル(LM)と知識グラフ(KG)の知識を用いて質問に答える問題に対処する新しいモデルであるQA-GNNを提案する。
既存のLMとLM+KGモデルに対する改善と、解釈可能で構造化された推論を行う能力を示しています。
- 参考スコア(独自算出の注目度): 122.84513233992422
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The problem of answering questions using knowledge from pre-trained language
models (LMs) and knowledge graphs (KGs) presents two challenges: given a QA
context (question and answer choice), methods need to (i) identify relevant
knowledge from large KGs, and (ii) perform joint reasoning over the QA context
and KG. Here we propose a new model, QA-GNN, which addresses the above
challenges through two key innovations: (i) relevance scoring, where we use LMs
to estimate the importance of KG nodes relative to the given QA context, and
(ii) joint reasoning, where we connect the QA context and KG to form a joint
graph, and mutually update their representations through graph-based message
passing. We evaluate QA-GNN on the CommonsenseQA and OpenBookQA datasets, and
show its improvement over existing LM and LM+KG models, as well as its
capability to perform interpretable and structured reasoning, e.g., correctly
handling negation in questions.
- Abstract(参考訳): 事前学習された言語モデル(lms)と知識グラフ(kgs)からの知識を使って質問に答える問題は、qaコンテキスト(質問と回答の選択)が与えられた場合、メソッドは(i)大きなkgから関連する知識を特定し、(ii)qaコンテキストとkgで共同推論を行う必要がある。
ここでは,この課題に対処する新たなモデルQA-GNNを提案する。 (i) 関連スコア, (i) LMを用いて与えられたQAコンテキストに対するKGノードの重要性を推定する, (ii) 共同推論, (ii) QAコンテキストとKGを結合グラフに接続し,グラフベースのメッセージパッシングによって表現を相互に更新する,という2つの重要なイノベーションである。
我々は、CommonsenseQAおよびOpenBookQAデータセットのQA-GNNを評価し、既存のLMおよびLM+KGモデルよりも改善され、また、質問の否定を正しく扱えるように解釈可能で構造化された推論を行う能力を示す。
関連論文リスト
- FusionMind -- Improving question and answering with external context
fusion [0.0]
事前学習言語モデル(LM)と知識グラフ(KG)を用いて,文脈知識が質問応答目標(QA)に与える影響を検討した。
知識事実のコンテキストを取り入れることで、パフォーマンスが大幅に向上することがわかった。
このことは、文脈的知識事実の統合が、質問応答のパフォーマンスを高める上でより影響があることを示唆している。
論文 参考訳(メタデータ) (2023-12-31T03:51:31Z) - GrapeQA: GRaph Augmentation and Pruning to Enhance Question-Answering [19.491275771319074]
Commonsense Question-Awering (QA)メソッドは、事前学習された言語モデル(LM)のパワーと知識グラフ(KG)が提供する推論を組み合わせる。
典型的なアプローチでは、QAペアに関連するノードをKGから収集してワーキンググラフを作り、続いてグラフニューラルネットワーク(GNN)を用いて推論する。
We propose GrapeQA with two simple improvements on the WG: (i) Prominent Entities for Graph Augmentation identifieds relevant text chunks from the QA pair and augments the WG with corresponding latent representations from the LM, and (ii) Context-Aware Node Prunings the QA less relevant to the QA。
論文 参考訳(メタデータ) (2023-03-22T05:35:29Z) - FiTs: Fine-grained Two-stage Training for Knowledge-aware Question
Answering [47.495991137191425]
本稿では, KAQAシステム性能を向上させるための微細な2段階トレーニングフレームワーク (FiT) を提案する。
第1段階は、PLMとKGからの表現の整列を目標とし、それらの間のモダリティギャップを埋めることである。
第2段階はナレッジ・アウェア・ファインチューニングと呼ばれ、モデルの共同推論能力の向上を目的としている。
論文 参考訳(メタデータ) (2023-02-23T06:25:51Z) - Relation-Aware Language-Graph Transformer for Question Answering [21.244992938222246]
本稿では,言語とグラフを関連づける質問応答変換器(QAT, Question Answering Transformer)を提案する。
具体的には、QATはメタパストークンを構築し、多様な構造的および意味的関係に基づいて関係中心の埋め込みを学習する。
我々は,CommonsenseQA や OpenBookQA などの常識質問応答データセットと,医療質問応答データセット MedQA-USMLE について,QAT の有効性を検証する。
論文 参考訳(メタデータ) (2022-12-02T05:10:10Z) - VQA-GNN: Reasoning with Multimodal Knowledge via Graph Neural Networks
for Visual Question Answering [79.22069768972207]
本稿では,VQA-GNNモデルを提案する。VQA-GNNは,非構造化知識と構造化知識の双方向融合を行い,統一知識表現を得る。
具体的には,シーングラフとコンセプトグラフを,QAコンテキストを表すスーパーノードを介して相互接続する。
課題2つのVQAタスクにおいて,本手法はVCRが3.2%,GQAが4.6%,強いベースラインVQAが3.2%向上し,概念レベルの推論を行う上での強みが示唆された。
論文 参考訳(メタデータ) (2022-05-23T17:55:34Z) - GreaseLM: Graph REASoning Enhanced Language Models for Question
Answering [159.9645181522436]
GreaseLMは、事前訓練されたLMとグラフニューラルネットワークの符号化された表現を、複数の層にわたるモダリティ相互作用操作で融合する新しいモデルである。
GreaseLMは、状況制約と構造化知識の両方の推論を必要とする問題に、より確実に答えることができる。
論文 参考訳(メタデータ) (2022-01-21T19:00:05Z) - Improving Unsupervised Question Answering via Summarization-Informed
Question Generation [47.96911338198302]
質問生成 (QG) とは, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、
我々は、自由なニュース要約データを使用し、宣言文を依存性解析、名前付きエンティティ認識、セマンティックロールラベリングを用いて適切な質問に変換する。
得られた質問は、元のニュース記事と組み合わせて、エンドツーエンドのニューラルQGモデルをトレーニングする。
論文 参考訳(メタデータ) (2021-09-16T13:08:43Z) - Toward Subgraph-Guided Knowledge Graph Question Generation with Graph
Neural Networks [53.58077686470096]
知識グラフ(KG)質問生成(QG)は,KGから自然言語質問を生成することを目的とする。
本研究は,KGサブグラフから質問を生成し,回答をターゲットとする,より現実的な環境に焦点を当てる。
論文 参考訳(メタデータ) (2020-04-13T15:43:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。