Universal quantum computation via quantum controlled classical
operations
- URL: http://arxiv.org/abs/2104.06424v2
- Date: Wed, 9 Feb 2022 20:36:26 GMT
- Title: Universal quantum computation via quantum controlled classical
operations
- Authors: Sebastian Horvat, Xiaoqin Gao, Borivoje Daki\'c
- Abstract summary: A universal set of gates for (classical or quantum) computation is a set of gates that can be used to approximate any other operation.
We show that even a primitive computer capable of implementing only SWAP gates, can be lifted to universal quantum computing.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A universal set of gates for (classical or quantum) computation is a set of
gates that can be used to approximate any other operation. It is well known
that a universal set for classical computation augmented with the Hadamard gate
results in universal quantum computing. Motivated by the latter, we pose the
following question: can one perform universal quantum computation by
supplementing a set of classical gates with a quantum control, and a set of
quantum gates operating solely on the latter? In this work we provide an
affirmative answer to this question by considering a computational model that
consists of $2n$ target bits together with a set of classical gates controlled
by log$(2n+1)$ ancillary qubits. We show that this model is equivalent to a
quantum computer operating on $n$ qubits. Furthermore, we show that even a
primitive computer that is capable of implementing only SWAP gates, can be
lifted to universal quantum computing, if aided with an appropriate quantum
control of logarithmic size. Our results thus exemplify the information
processing power brought forth by the quantum control system.
Related papers
- Generalised Quantum Gates for Qudits and their Application in Quantum Fourier Transform [0.0]
We propose a novel formulation of qudit gates that is universally applicable for any number of levels $d$.
By extending the mathematical framework of quantum gates to arbitrary dimensions, we derive explicit gate operations that form a universal set for quantum computation on qudits of any size.
arXiv Detail & Related papers (2024-10-07T15:23:57Z) - Elementary Quantum Arithmetic Logic Units for Near-Term Quantum Computers [0.0]
We propose feasible quantum arithmetic logic units (QALUs) for near-term quantum computers with qubits arranged in two-dimensional arrays.
We introduce a feasible quantum arithmetic operation to compute the two's complement representation of signed integers.
Our work demonstrates a viable implementation of QALUs on near-term quantum computers, advancing towards scalable and resource-efficient quantum arithmetic operations.
arXiv Detail & Related papers (2024-08-13T01:49:58Z) - Full Quantum Process Tomography of a Universal Entangling Gate on an
IBM's Quantum Computer [0.0]
We conduct a thorough analysis of the SQSCZ gate, a universal two-qubit entangling gate, using real quantum hardware.
Our analysis unveils commendable fidelities and noise properties of the SQSCZ gate, with process fidelities reaching $97.27098%$ and $88.99383%$, respectively.
arXiv Detail & Related papers (2024-02-10T13:25:01Z) - Universal Quantum Computation via Superposed Orders of Single-Qubit
Gates [7.796917261490019]
We prove that any two-qubit controlled quantum gate can be deterministically realized.
Superposed orders of single-qubit gates can enable universal quantum computation.
arXiv Detail & Related papers (2023-11-22T19:10:57Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Quantum simulation of $\phi^4$ theories in qudit systems [53.122045119395594]
We discuss the implementation of quantum algorithms for lattice $Phi4$ theory on circuit quantum electrodynamics (cQED) system.
The main advantage of qudit systems is that its multi-level characteristic allows the field interaction to be implemented only with diagonal single-qudit gates.
arXiv Detail & Related papers (2021-08-30T16:30:33Z) - Efficient quantum programming using EASE gates on a trapped-ion quantum
computer [1.9610635155358869]
We focus on the recently invented efficient, arbitrary, simultaneously entangling (EASE) gates, available on a trapped-ion quantum computer.
We show an $n$-qubit Clifford circuit can be implemented using $6log(n)$ EASE gates, an $n$-qubit multiply-controlled NOT gate can be implemented using $3n/2$ EASE gates, and an $n$-qubit permutation can be implemented using six EASE gates.
arXiv Detail & Related papers (2021-07-15T20:03:23Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.