Elementary Quantum Arithmetic Logic Units for Near-Term Quantum Computers
- URL: http://arxiv.org/abs/2408.06561v1
- Date: Tue, 13 Aug 2024 01:49:58 GMT
- Title: Elementary Quantum Arithmetic Logic Units for Near-Term Quantum Computers
- Authors: Junxu Li,
- Abstract summary: We propose feasible quantum arithmetic logic units (QALUs) for near-term quantum computers with qubits arranged in two-dimensional arrays.
We introduce a feasible quantum arithmetic operation to compute the two's complement representation of signed integers.
Our work demonstrates a viable implementation of QALUs on near-term quantum computers, advancing towards scalable and resource-efficient quantum arithmetic operations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum arithmetic logic units (QALUs) constitute a fundamental component of quantum computing. However, the implementation of QALUs on near-term quantum computers remains a substantial challenge, largely due to the limited connectivity of qubits. In this paper, we propose feasible QALUs, including quantum binary adders, subtractors, multipliers, and dividers, which are designed for near-term quantum computers with qubits arranged in two-dimensional arrays. Additionally, we introduce a feasible quantum arithmetic operation to compute the two's complement representation of signed integers. The proposed QALUs utilize only Pauli-X gates, CNOT gates, and $C\sqrt{X}$ (CSX) gates, and all two-qubit gates are operated between nearest neighbor qubits. Our work demonstrates a viable implementation of QALUs on near-term quantum computers, advancing towards scalable and resource-efficient quantum arithmetic operations.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Quantum Circuit Learning on NISQ Hardware [0.0]
Current quantum computers are small and error-prone systems.
Fault-tolerant quantum computers are not expected to be available in the near future.
We show that exemplary QCL circuits with up to three qubits are executable on the IBM quantum computer.
arXiv Detail & Related papers (2024-05-03T13:00:32Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - QFT based quantum arithmetic logic unit on IBM quantum computer [0.0]
The qALU is capable of performing arithmetic ADD (addition) and logic NAND gate operations.
We executed our quantum Fourier transform based qALU design on real quantum computer hardware provided by IBM.
The results demonstrated that the proposed circuit can perform arithmetic and logic operations with a high success rate.
arXiv Detail & Related papers (2023-06-16T00:25:21Z) - An Improved QFT-Based Quantum Comparator and Extended Modular Arithmetic
Using One Ancilla Qubit [4.314578336989336]
We propose a quantum-classical comparator based on the quantum Fourier transform (QFT)
Proposed operators only require one ancilla qubit, which is optimal for qubit resources.
The proposed algorithms reduce computing resources and make them valuable for Noisy Intermediate-Scale Quantum (NISQ) computers.
arXiv Detail & Related papers (2023-05-16T02:09:41Z) - Oblivious Quantum Computation and Delegated Multiparty Quantum
Computation [61.12008553173672]
We propose a new concept, oblivious computation quantum computation, where secrecy of the input qubits and the program to identify the quantum gates are required.
Exploiting quantum teleportation, we propose a two-server protocol for this task.
Also, we discuss delegated multiparty quantum computation, in which, several users ask multiparty quantum computation to server(s) only using classical communications.
arXiv Detail & Related papers (2022-11-02T09:01:33Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Quantum Netlist Compiler (QNC) [0.0]
We introduce the Quantum Netlist Compiler (QNC) that converts arbitrary unitary operators or desired initial states of quantum algorithms to OpenQASM-2.0 circuits.
The results show that QNC is well suited for quantum circuit optimization and produces circuits with competitive success rates in practice.
arXiv Detail & Related papers (2022-09-02T05:00:38Z) - Separation of gates in quantum parallel programming [1.4821822452801385]
Ying conceived of using two or more small-capacity quantum computers to produce a larger-capacity quantum computing system by quantum parallel programming.
Main obstacle is separating the quantum gates in the whole circuit to produce a tensor product of the local gates.
We theoretically analyse the (sufficient and necessary) separability conditions of multipartite quantum gates in finite or infinite dimensional systems.
arXiv Detail & Related papers (2021-10-28T09:11:41Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.